Một phòng họp lúc đầu có một số dãy ghế với tổng cộng 40 chỗ ngồi. Do phải sắp xếp 55 chỗ ngồi cho một cuộc họp
Bài 6.28 trang 17 sách bài tập Toán 9 Tập 2: Một phòng họp lúc đầu có một số dãy ghế với tổng cộng 40 chỗ ngồi. Do phải sắp xếp 55 chỗ ngồi cho một cuộc họp nên người ta kê thêm một dãy ghế và mỗi dãy ghế xếp thêm một chỗ ngồi. Hỏi lúc đầu có mấy dãy ghế trong phòng họp đó?
Lời giải:
Gọi số dãy ghế trong phòng họp lúc đầu là x (dãy) ().
Số chỗ ngồi ở mỗi dãy ghế lúc đầu là (chỗ).
Số chỗ ngồi ở mỗi dãy ghế sau khi xếp thêm là (chỗ).
Mỗi dãy ghế tăng thêm 1 chỗ ngồi nên ta có phương trình:
55x – 40(x + 1) = x(x + 1)
15x – 40 = x2 + x
x2 – 14x + 40 = 0
Ta có ∆ = (–14)2 – 4 . 1 . 40 = 36 > 0 nên phương trình có hai nghiệm phân biệt:
(thỏa mãn);
(thỏa mãn).
Vậy có 2 trường hợp cho phòng họp lúc đầu là có 4 dãy ghế, mỗi dãy có 10 chỗ ngồi và có 10 dãy ghế, mỗi dãy có 4 chỗ ngồi.
Lời giải SBT Toán 9 Bài 21: Giải bài toán bằng cách lập phương trình hay khác:
Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
SBT Toán 9 Bài 23: Bảng tần số tương đối và biểu đồ tần số tương đối
SBT Toán 9 Bài 24: Bảng tần số, tần số tương đối ghép nhóm và biểu đồ
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT