Khoảng cách giữa hai chân tháp AB và MN là x (Hình 3). So với phương nằm ngang AH, từ đỉnh A của tháp AB

Bài 7 trang 73 sách bài tập Toán 9 Tập 1: Khoảng cách giữa hai chân tháp AB và MN là x (Hình 3). So với phương nằm ngang AH, từ đỉnh A của tháp AB nhìn lên đỉnh M của tháp MN ta được góc α, từ đỉnh A của tháp AB nhìn xuống chân N của tháp MN ta được góc β. Cho biết x = 120 m, α = 30° và β = 20°. Chiều cao của tháp MN (kết quả làm tròn đến hàng đơn vị của mét) là

Khoảng cách giữa hai chân tháp AB và MN là x (Hình 3). So với phương nằm ngang AH, từ đỉnh A của tháp AB

A. 113 m.

B. 25 m.

C. 101 m.

D. 217 m.

Lời giải:

Đáp án đúng là: A

Ta có: ABNH là hình chữ nhật nên AH = BN = 120 m.

Xét ∆AHN vuông tại H có: NH = AH.tanβ = 120.tan20° (m).

Xét ∆AHM vuông tại H có:

MH=AHtanα=120tan30°=12033=403 (m).

Do đó MN=MH+HN=403+tan20°20113 (m).

Lời giải SBT Toán 9 Bài tập cuối chương 4 hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác