Cho đồ thị của các hàm số y = ax^2 (a ≠ 0) và y = a’x^2 (a’ ≠ 0) (Hình 4)

Bài 6 trang 7 sách bài tập Toán 9 Tập 2: Cho đồ thị của các hàm số y = ax2 (a ≠ 0) và y = a’x2 (a’ ≠ 0) (Hình 4).

Cho đồ thị của các hàm số y = ax^2 (a ≠ 0) và y = a’x^2 (a’ ≠ 0) (Hình 4)

Cho biết điểm A thuộc đồ thị của hàm số y = ax2, điểm B thuộc đồ thị của hàm số y = a’x2.

a) Xác định các hệ số a và a’.

b) Lấy điểm A’ đối xứng với A qua trục tung. Điểm A’ có thuộc đồ thị của hàm số y = ax2 không? Vì sao?

c) Biết rằng điểm M(4; b) thuộc đồ thị của hàm số y = a’x2, hãy tính b. Điểm M’(– 4; b) có thuộc đồ thị của hàm số y = a’x2 không? Vì sao?

Lời giải:

Từ Hình 4 ta có A(2; –4) và B(2; –2).

a) ⦁ Do điểm A thuộc đồ thị của hàm số y = ax2 nên thay x = 2; y = –4 vào hàm số y = ax2, ta được

‒4 = a.22 hay 4a = ‒4, suy ra a = –1.

Do đó (P): y = –x2.

⦁ Do điểm B thuộc đồ thị của hàm số y = a’x2 nên thay toạ độ điểm x = 2; y = –2 vào hàm số y = a’x2, ta được

‒2 = a.22 hay 4a = ‒2, suy ra a'=12.

Do đó P':y=12x2.

b) Cách 1. Ta có: đồ thị hàm số (P): y = –x2 là một parabol nhận trục tung làm trục đối xứng.

Mà hai điểm A, A’ đối xứng với nhau qua trục tung và A thuộc (P) nên điểm A’ cũng thuộc (P): y = –x2.

Cách 2. Điểm A’ đối xứng với điểm A qua trục tung nên ta có A’(–2; –4).

Thay x = –2 vào hàm số y = –x2, ta được: y = –(–2)2 = –4.

Do đó điểm A’(–2; –4) cũng thuộc (P): y = –x2.

c) Cách 1. Ta có: đồ thị hàm số P':y=12x2 là một parabol nhận trục tung làm trục đối xứng.

Xét điểm M(4; b) và M’(–4; b) là hai điểm có hoành độ đối nhau và tung độ bằng nhau nên M, M’ là hai điểm đối xứng với nhau qua trục tung, mà điểm M(4; b) thuộc đồ thị (P’) nên điểm M’(–4; b) cũng thuộc P':y=12x2.

Cách 2. Do điểm M(4; b) thuộc đồ thị của hàm số y=12x2, nên thay x = 4; y = b vào hàm số y=12x2, ta được

b=1242 suy ra b = –8.

Do đó M(4; –8) và M’(–4; –8).

Thay x = –4 vào hàm số y=12x2, ta được:

y=1242=1216=8.

Vậy điểm M’(–4; –8) thuộc P':y=12x2.

Lời giải SBT Toán 9 Bài 1: Hàm số và đồ thị của hàm số y = ax2 (a ≠ 0) hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác