Cho hình bình hành ABCD có tia phân giác của góc A cắt đường chéo BD tại M

Bài 4 trang 48 sách bài tập Toán 8 Tập 2: Cho hình bình hành ABCD có tia phân giác của góc A cắt đường chéo BD tại M và phân giác của góc D cắt đường chéo AC tại N. Chứng minh MN // AD.

Lời giải:

Cho hình bình hành ABCD có tia phân giác của góc A cắt đường chéo BD tại M

Gọi G là giao điểm của AC và BD.

• Vì DN là phân giác của ADC^ trong ∆ADC nên NANC=ADDC.

• Vì AM là phân giác của BAD^ trong ∆ABD nên MDMB=ADAB = ADDC (vì AB = DC).

Suy ra MDMB=NANC.

Do đó NAMD=NCMB=NA+NCMD+MB=ACBD=AGDG (AC = 2AG; BD = 2BG)

Khi đó NAAG=MDDG.

Xét ∆AGD có NAAG=MDDG nên theo định lí Thalès đảo, ta có MN // AD.

Lời giải SBT Toán 8 Bài 3: Tính chất đường phân giác của tam giác hay khác:

Xem thêm giải sách bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Chân trời sáng tạo khác