Cho tam giác ABC cân ở A có góc BAC = 120 độ. Đường trung trực của các cạnh AB và AC
Bài 90 trang 95 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân ở A có . Đường trung trực của các cạnh AB và AC cắt nhau ở I và cắt cạnh BC lần lượt tại D, E (Hình 56).
a) Chứng minh điểm I nằm trên đường trung trực của đoạn thẳng DE.
b) Đường tròn tâm I bán kính IA đi qua những điểm nào?
c) Tính số đo các góc của tam giác IBC.
Lời giải:
a) Gọi P và Q lần lượt là giao điểm của hai đường trung trực d, d’ với AC, AB.
•Vì tam giác ABC cân tại A nên AB = AC, .
Vì Q là trung điểm của AB nên AQ = QB = AB.
Vì P là trung điểm của AC nên AP = PC = AC.
Mà AB = AC nên AQ = BQ = AP = CP.
• Xét ∆AQIvà ∆API có:
,
AI là cạnh chung,
AQ = AP (chứng minh trên)
Do đó ∆AQI= ∆API (cạnh huyền – cạnh góc vuông).
Do đó QI = PI (hai cạnh tương ứng).
• Xét ∆BQD và ∆CPE có:
,
(chứng minh trên),
BQ = CP (chứng minh trên)
Do đó ∆BQD = ∆CPE (cạnh góc vuông – góc nhọn kề).
Suy ra QD = PE (hai cạnh tương ứng).
• Ta có: QI = QD + DI và PI = PE + EI.
Mà QI = PI và QD = PE (chứng minh trên)
Do đó DI = EI nên điểm I nằm trên đường trung trực của đoạn thẳng DE.
Vậy điểm I nằm trên đường trung trực của đoạn thẳng DE.
b) Vì I nằm trên đường trung trực của AB nên IA = IB.
Vì I nằm trên đường trung trực của AC nên IA = IC.
Suy ra IA = IB = IC
Nên đường tròn tâm I bán kính IA đi qua các điểm A, B, C
Vậy đường tròn tâm I bán kính IA đi qua các điểm A, B, C.
c) Vì ∆AQI= ∆API (chứng minh câu a)
Nên (hai góc tương ứng)
Do đó AI là tia phân giác của góc BAC và
Xét tam giác ABI có IA = IB (chứng minh câu b) nên tam giác ABI cân tại I.
Lại có nên tam giác ABI là tam giác đều.
Do đó IA = IB = AB.
Mà AB = AC, IA = IB = IC nên IA = IB = IC = AB = AC.
Xét ∆BAC và ∆BIC có:
AB = IB (chứng minh trên),
AC = IC (chứng minh trên),
BC là cạnh chung
Do đó ∆BAC = ∆BIC (c.c.c)
Suy ra (các cặp góc tương ứng)
Xét ∆ABC có (tổng ba góc của một tam giác).
Mà (giả thiết) và (do ∆ABCcân tại A).
Suy ra .
Do đó
Vậy .
Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Cánh diều
- Giải SBT Toán 7 Cánh diều
- Giải lớp 7 Cánh diều (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều