Cho đa thức P(x) = ax^4 + bx^3 + cx^2 + dx + e (a ≠ 0) với a + b + c + d + e = 0. Chứng tỏ rằng x = 1 là nghiệm của đa thức P(x)

Bài 62 trang 56 sách bài tập Toán lớp 7 Tập 2: Cho đa thức P(x) = ax4 + bx3 + cx2 + dx + e (a ≠ 0) với a + b + c + d + e = 0. Chứng tỏ rằng x = 1 là nghiệm của đa thức P(x).

Lời giải:

Xét đa thức P(x) = ax4 + bx3 + cx2 + dx + e (a ≠ 0).

Tại x = 1 ta có:

P(1) = a . 14 + b . 13 + c . 12 + d . 1 + e

= a + b + c + d + e

= 0 (do a + b + c + d + e = 0).

Do đó x = 1 là nghiệm của đa thức P(x).

Vậy x = 1 là nghiệm của đa thức P(x).

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác