Cho hình lăng trụ đứng ABC.A'B'C' có góc BAC = 60 độ
Bài 7.54 trang 43 SBT Toán 11 Tập 2: Cho hình lăng trụ đứng ABC.A'B'C' có , AB = 2a, AC = 3a và số đo của góc nhị diện [A', BC, A] bằng 45°.
a) Tính theo a khoảng cách từ điểm A đến mặt phẳng (A'BC).
b) Tính theo a thể tích khối lăng trụ ABC.A'B'C'.
Lời giải:
a) Kẻ AH BC tại H.
Vì ABC.A'B'C' là lăng trụ đứng nên A'A (ABC), suy ra A'A BC mà AH BC nên BC (A'AH).
Kẻ AK A'H tại K, lại có BC AK (do BC (A'AH)) nên AK (A'CB).
Do đó d(A, (A'BC)) = AK.
Có BC (A'AH) nên BC A'H mà AH BC nên góc nhị diện [A', BC, A] bằng , suy ra .
Áp dụng định lí côsin trong tam giác ABC, có
- 2.AB.AC.cos = 4a2+9a2-2.2a.3a.cos60o = 7a2.
BC = a.
Vì
= .
Xét tam giác AHK vuông tại K, có AK = AH . sin45° = .
Vậy d(A, (A'BC)) = .
b) Vì tam giác A'AH vuông tại A, nên tam giác A'AH vuông cân tại A nên AA' = AH = .
Ta có: AA' = .AB.AC.sin.AA'
= .2a.3a.sin60o.= .
Lời giải SBT Toán 11 Bài tập cuối chương 7 hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
SBT Toán 11 Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập
SBT Toán 11 Bài 30: Công thức nhân xác suất cho hai biến cố độc lập
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT