Cho hình chóp S.ABCD có mặt phẳng (SAB) vuông góc với mặt đáy

Bài 20 trang 69 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có mặt phẳng (SAB) vuông góc với mặt đáy (ABCD), tam giác SAB đều, đáy ABCD là hình vuông cạnh bằng a. Gọi H là trung điểm của cạnh AB. Khoảng cách từ điểm H đến mặt phẳng (SAC) bằng

A. a305 .

B. a3010 .

C. a610 .

D. a65 .

Lời giải:

Đáp án đúng là: E. a2114 .

Cho hình chóp S.ABCD có mặt phẳng (SAB) vuông góc với mặt đáy

Vì tam giác SAB đều, H là trung điểm của AB nên SH là đường cao hay SH AB.

Do (SAB) (ABCD); (SAB) (ABCD) = AB mà SH AB nên SH (ABCD), suy ra SH AC.

Gọi N là trung điểm của AD.

Xét tam giác ABD có H là trung điểm của AB, N là trung điểm của AD nên HN là đường trung bình của tam giác ABD, suy ra HN // BD.

Do ABCD là hình vuông nên AC BD mà HN // BD nên HN AC.

Vì HN AC và SH AC nên AC (SHN), suy ra (SAC) (SHN).

Gọi AC HN = I, kẻ HK SI tại K.

Vì (SAC) (SHN), (SAC) (SHN) = SI mà HK SI nên HK (SAC).

Do đó d(H, (SAC)) = HK.

Gọi O là giao điểm của AC và BD.

Vì ABCD là hình vuông nên O là trung điểm của BD.

Xét tam giác ABD vuông tại A, có BD=AB2+AD2=a2+a2=a2 .

Vì O là trung điểm của BD nên BO = BD2= a22.

Xét tam giác ABO có H là trung điểm của AB, HI // BO (do HN //BD) nên I là trung điểm của AO.

Vì I là trung điểm của AO, H là trung điểm của AB nên HI là đường trung bình của tam giác ABO, suy ra HI=BO2=a24 .

Vì tam giác SAB là tam giác đều cạnh a, SH là đường cao nên SH=a32 .

Vì SH (ABCD) nên SH HI hay tam giác SHI vuông tại H.

Xét tam giác SHI vuông tại H, HK là đường cao, có:

1HK2=1SH2+1HI2=43a2+162a2=283a2HK=a2114.

Vậy d(H, (SAC)) = a2114 .

Lời giải SBT Toán 11 Bài tập ôn tập cuối năm hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác