Cho hình tứ diện đều ABCD có cạnh bằng căn bậc hai 11 Gọi I là trung điểm của cạnh CD
Bài 4 trang 68 SBT Toán 11 Tập 2: Cho hình tứ diện đều ABCD có cạnh bằng . Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.
Lời giải:
Gọi O là trung điểm AC, J là trung điểm OD.
Vě OH ⊥ BJ, HE // AC, EF // OH.
Có IJ // AC nên AC // (BIJ).
d(AC, BI) = d(AC, (BIJ)) = d(O, (BIJ)).
Do ABCD là tứ diện đều nên ta dễ dàng nhận ra AC ⊥ (OBD).
AC ⊥ OH (OH OBD).
AC // IJ, OH ⊥ IJ.
Kết hợp giả thiết, suy ra OH ⊥ (BIJ) hay d(O, (BIJ)) = OH.
Xét tam giác OBD cân tại O, ta có
.
Áp dụng công thức Heron, ta có:
Ta tính được OH = .
Vậy khoảng cách giữa hai đường thẳng AC và BI là .
Lời giải SBT Toán 11 Bài 4: Khoảng cách trong không gian hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST