Mũi tên của bánh xe trong trò chơi Chiếc nón kì diệu có thể dừng lại ở một
Bài 9.19 trang 68 Sách bài tập Toán lớp 10 Tập 2: Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi được quay 3 lần. Xác suất để mũi tên dừng lại ở ba vị trí khác nhau là
A. ;
B. ;
C. ;
D. .
Lời giải:
Đáp án đúng là: A
Quay ngẫu nhiên 3 lần, mỗi lần có thể dừng lại ở một trong 7 vị trí.
Do đó, n(Ω) = 7 . 7 . 7 = 343.
Gọi biến cố A: “mũi tên dừng lại ở ba vị trí khác nhau trong 3 lần quay”.
Lần quay thứ nhất có số cách chọn vị trí là: 7
Lần quay thứ hai có số cách chọn vị trí là: 6
Lần quay thứ ba có số cách chọn vị trí là: 5
Số cách để mũi tên dừng lại ở ba vị trí khác nhau là: 7 . 6 . 5 = 210 (cách)
Do đó, n(A) = 210.
Vậy P(A) = .
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT