Cho tam giác ABC nội tiếp trong đường tròn (O) Gọi H là trực tâm tam giác ABC

Bài 3 trang 102 SBT Toán 10 Tập 1: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm tam giác ABC và B’ là điểm đối xứng với B qua tâm O. Hãy so sánh các vectơ AHB'C, AB'HC​.

Lời giải:

Cho tam giác ABC nội tiếp trong đường tròn (O) Gọi H là trực tâm tam giác ABC

Do BB’ là đường kính nên BCB'^ = 90° ( góc nội tiếp chắn nửa đường tròn )

BC B’C.

H là trực tâm tam giác ABC nên BC AH.

Suy ra AH // B’C ( do đều vuông góc với BC ).

Do BB’ là đường kính nên BAB'^ = 90° ( góc nội tiếp chắn nửa đường tròn )

BA B’A.

H là trực tâm tam giác ABC nên CH BA.

Suy ra CH // B’A ( do đều vuông góc với BA ).

Như vậy AB’CH là hình bình hành ( DHNB hình bình hành )

AH = B'CAB' = HC​.

Vậy AH = B'CAB' = HC​.

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác