Tính biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau
Bài 1 trang 8 SBT Toán 10 Tập 2: Tính biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau. Xác định dấu của chúng tại x = -2.
a) ;
b)
c)
Lời giải:
a) Ta có: ∆ = b2 – 4ac = 32 – 4.( –2).( –4) = –23 < 0 nên f(x) vô nghiệm và f (x) cùng dấu với a với mọi giá trị x.
Ta lại có: a = 0 – 2 < 0 nên tại x = – 2 thì f(– 2) < 0.
Vì vậy f(x) âm tại x = –2.
b) Ta có: ∆ = b2 – 4ac = 82 – 4.2.8 = 0 nên g (x) = 0 có nghiệm kép là:
x0 = = = – 2.Do đó g (– 2) = 0.
Vì vậy g(x) không âm cũng không dương tại x = –2.
c) Ta có: ∆ = b2 – 4ac = 72 – 4.3.( – 10 ) = 169 > 0 nên h(x) có hai nghiệm phân biệt lần lượt là:
x1 = = = 1
x2 = = =
h(– 2) = 3.(– 2)2 + 7.(– 2) – 10 = – 12 < 0.
Vì vậy h(x) âm tại x = – 2.
Lời giải SBT Toán 10 Bài 1: Dấu của tam thức bậc hai hay khác:
Bài 2 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để: ....
Bài 3 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để: ....
Bài 5 trang 9 SBT Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau: ....
Bài 6 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để: ....
Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST