Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) (x+2)^2+(y-4)^2=25

Bài 56 trang 89 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x+2)2+(y-4)2=25 và điểm A(- 1; 3)

a) Xác định vị trí tương đối của điểm A đối với đường tròn (C).

b) Đường thẳng d thay đổi đi qua A cắt đường tròn tại M và N. Viết phương trình đường thẳng d sao cho MN ngắn nhất.

Lời giải:

a) Đường tròn (C) có tâm I(-2; 4) và bán kính R = 25 = 5.

Ta có: IA=|IA|=2+12+432=2 < 5

Do đó A nằm trong đường tròn (C).

b) Dây cung MN ngắn nhất khi khoảng cách từ tâm I đến dây cung là lớn nhất

Do d đi qua A cố định nên khi d thay đổi thì khoảng cách lớn nhất từ I đến d chính bằng IA.

Hay IA vuông góc với d.

Vectơ pháp tuyến của đường thẳng d: IA=(1;-1)

Phương trình đường thẳng d: (x + 1) – (y – 3) = 0 ⇔ x – y + 4 = 0.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác