Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7

Bài 54 trang 89 SBT Toán 10 Tập 2: Viết phương trình đường tròn (C) trong mỗi trường hợp sau:

a) (C) có tâm I(- 6; 2) bán kính 7.

b) (C) có tâm I(3; - 7) và đi qua điểm A(4; 1)

c) (C) có tâm I(1; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0.

d) (C) có đường kính AB với A(- 2; 3) và B(0; 1)

e) (C) có tâm I thuộc đường thẳng 1:Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7 và (C) tiếp xúc với hai đường thẳng 2: 3x+4y-1=0, 3: 3x-4y+2=0

Lời giải:

a) Phương trình (C) có tâm I(- 6; 2) bán kính 7 là: (x + 6)2 + (y – 2)2 = 72.

b) Bán kính của đường tròn (C) là: IA =|IA| =432+1+72=65

Phương trình đường tròn là: (x-3)2+(y+7)2 =65.

c) Bán kính của đường tròn chính bằng khoảng cách từ I đến đường thẳng d: 3x + 4y + 19 = 0.

Suy ra R=d(I,d)= Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7=6

Phương trình đường tròn là: (x -1)2 + (y – 2)2 = 36.

d) Gọi I là tâm của đường tròn thì IA = R và I là trung điểm của AB

Suy ra I(-1; 2), IA =|IA| =1+22+232=2

Phương trình đường tròn là: (x +1)2 + (y – 2)2 = 2.

e) Tâm I thuộc đường thẳng 1:Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7 nên I(1 + t; 1 – t)

Đường tròn có 2 tiếp tuyến nên khoảng cách từ I đến 2 tiếp tuyến bằng nhau và bằng bán kính của đường tròn.

Ta có: d(I,2)=d(I,3)

Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7

|t-6|=|7t+1|

Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7

Với t = 58 thì I138;38 và R = d(I; ∆2) = Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7. Khi đó phương trình đường tròn là: x1382+y382=43402.

Với t = 76 thì I16;138 và R = d(I; ∆2) = Viết phương trình đường tròn (C) trong mỗi trường hợp sau a) (C) có tâm I(- 6; 2) bán kính 7. Khi đó phương trình đường tròn là: x+162+y1362=43302.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác