Cho ∆1 x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'

Bài 38 trang 82 SBT Toán 10 Tập 2: Cho Δ1:Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'2:Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:

A. 300;

B. 450;

C. 900;

D. 600.

Lời giải:

Ta thấy vectơ chỉ phương của ∆1 là: u1=(3;-1)

Vectơ chỉ phương của ∆2 là: u2=(3;1)

Ta có: cos(u1,u2) = Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'

Suy ra góc giữa 2 đường thẳng chính là góc nhọn giữa 2 vectơ chỉ phương của 2 đường thẳng đó.

Do đó Δ1,Δ2=u1,u2=60o

Vậy chọn đáp án D.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác