Giải Toán 8 VNEN Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và phối hợp nhiều phương pháp

1 (Trang 20 Toán 8 VNEN Tập 1)

a) Phân tích đa thức x2 - 2x + xy - 2y thành nhân tử.

Lời giải:

Cách 1: x2 - 2x + xy - 2y = (x2 - 2x) + (xy - 2y) = x(x - 2) + y(x - 2) = (x - 2)(x + y).

Cách 2: x2 - 2x + xy - 2y = (x2 + xy) - (2x + 2y) = x(x + y) - 2(x + y) = (x + y)(x - 2).

b) Phân tích các đa thức sau thành nhân tử:

x3 - 2x2 - x + 2;             x2 + 6x – y2 + 9.

Lời giải:

x3 - 2x2 - x + 2 = x2( x - 2) - (x - 2) = (x - 2)(x2 - 1);

x2 + 6x – y2 + 9 = (x2 + 6x + 9) – y2 = (x + 3)2 – y2 = (x + 3 - y)(x + 3 + y).

2 (Trang 20 Toán 8 VNEN Tập 1)

a) Thực hiện các yêu cầu sau:

- Viết tiếp vào chỗ trống theo mẫu để chỉ rõ đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử:

x2 + 3x - 2xy - 3y + y2

= (x2 - 2xy + y2) + (3x - 3y) ( Phương pháp nhóm hạng tử)

= (x - y)2 + 3(x - y) (Phương pháp ................. và phương pháp ....................)

= (x - y)(x - y + 3) (Phương pháp ..................)

Lời giải:

x2 + 3x - 2xy - 3y + y2

= (x2 - 2xy + y2) + (3x - 3y) ( Phương pháp nhóm hạng tử)

= (x - y)2 + 3(x - y) (Phương pháp sử dụng hằng đẳng thức và phương pháp đặt nhân tử chung)

= (x - y)(x - y + 3) (Phương pháp đặt nhân tử chung).

- Phân tích đa thức sau thành nhân tử: x2 - 2x - 3.

Lời giải:

x2 - 2x - 3 = x2 - 3x + x - 3 = x(x - 3) + (x - 3) = (x - 3)(x + 1).

b) Phân tích đa thức 2x3y - 2xy3 - 4xy2 - 2xy thành nhân tử.

Lời giải:

2x3y - 2xy3 - 4xy2 - 2xy

= 2xy(x2 – y2 - 2y - 1)

= 2xy[x2 - (y2 + 2y + 1)]

= 2xy[x2 - (y + 1)2]

= 2xy(x - y -1)(x + y + 1).

1 (Trang 21 Toán 8 VNEN Tập 1)

a) 2x2 - 2xy - 5x + 5y;

b) 8x3 + 4xy - 2ax - ay;

c) x3 - 4x2 + 4x;

d) 2xy – x2 – y2 + 16;

e) x2 – y2 - 2yz – z2;

g) 3a2 - 6ab + 3b2 - 12c2.

Lời giải:

a) 2x2 - 2xy - 5x + 5y = 2x(x - y) - 5(x - y) = (x - y)(2x - 5);

b) 8x2 + 4xy - 2ax - ay = 4x(2x + y) - a(2x + y) = (2x + y)(4x - a);

c) x3 - 4x2 + 4x = x(x2 - 4x + 4) = x(x - 2)2;

d) 2xy – x2 – y2 + 16 = 16 - (x2 - 2xy + y2) = 42 - (x - y)2 = (4 - x + y)(4 + x - y);

e) x2 – y2 - 2yz – z2 = x2 - (y2 + 2yz + z2) = x2 - (y + z)2 = (x - y - z)(x + y + z);

g) 3a2 - 6ab + 3b2 - 12c2 = 3(a2 - 2ab + b2 - 4c2) = 3[(a - b)2 - (4c)2] = 3(a - b - 4 c)(a - b + 4c).

2 (Trang 21 Toán 8 VNEN Tập 1)

Tính nhanh:

a) 37,5.8,5 - 7,5.3,4 - 6,6.7,5 + 1,5.37,5;

b) 352 + 402 – 252 + 80.35.

Lời giải:

a) 37,5.8,5 - 7,5.3,4 - 6,6.7,5 + 1,5.37,5

= (37,5.8,5 + 1,5.37,5) - (7,5.3,4 + 6,6.7,5)

= 37,5(8,5 + 1,5) - 7,5(3,4 + 6,6)

= 37,5.10 - 7,5.10 = 375 - 75 = 300;

b) 352 + 402 – 252 + 80.35 = (352 + 2.40.35 + 402) – 252 = (35 + 40)2 – 252

= (75 - 25)(75 + 25) = 50.100 = 5000.

3 (Trang 21 Toán 8 VNEN Tập 1)

Tìm x, biết:

Giải Toán 8 VNEN Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và phối hợp nhiều phương pháp | Giải bài tập Toán 8 VNEN hay nhất

Lời giải:

Giải Toán 8 VNEN Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và phối hợp nhiều phương pháp | Giải bài tập Toán 8 VNEN hay nhất

b) 2x - 2y – x2 + 2xy – y2 = 0

⇔ 2(x - y) - (x - y)2 = 0

⇔ (x - y)(2 - x + y) = 0

⇔ x - y = 0 hoặc 2 - x + y = 0

⇔ x = y hoặc x = 2 + y.

Vậy x = y hoặc x = 2 + y.

c) x(x - 3) + x - 3 = 0

⇔ (x - 3)(x + 1) = 0

⇔ x - 3 = 0 hoặc x + 1 = 0

⇔ x = 3 hoặc x = -1.

Vậy x = 3 hoặc x = -1.

d) x2(x - 3) + 27 - 9x = 0

⇔ x2(x - 3) - 9(x - 3) = 0

⇔ (x - 3)(x2 - 9) = 0

⇔ (x - 3)(x - 3)(x + 3) = 0

⇔ x - 3 = 0 hoặc x + 3 = 0

⇔ x = 3 hoặc x = -3.

Vậy x = 3 hoặc x = -3.

4 (Trang 22 Toán 8 VNEN Tập 1)

Phân tích các đa thức sau thành nhân tử:

a) x2 - 4x + 3;

b) x2 + x - 6;

c) x2 - 5x + 6;

d) x4 + 4.

Lời giải:

a) x2 - 4x + 3 = x2 - x - 3x + 3 = x( x - 1) - 3(x - 1) = (x - 3)(x - 1);

b) x2 + x - 6 = x2 - 2x + 3x - 6 = x(x - 2) + 3(x - 2) = (x - 2)(x + 3);

c) x2 - 5x + 6 = x2 - 2x - 3x + 6 = x(x - 2) - 3(x - 2) = (x - 2)(x - 3);

d) x4 + 4 = x4 + 4x2 - 4x2 + 4 = x4 + 4x2 + 4 - 4x2 = (x4 + 4x2 + 4) - 4x2

= (x2 + 2)2 - (2x)2 = (x2 + 2 + 2x)(x2 + 2 - 2x).

1 (Trang 22 Toán 8 VNEN Tập 1)

Chứng minh rằng: (3n + 4)2 - 16 chia hết cho 3 với mọi số nguyên n.

Lời giải:

Có: (3n + 4)2 - 16 = (3n + 4)2 – 42 = (3n + 4 - 4)(3n + 4 + 4) = 3n(3n + 8) luôn chia hết cho 3 với mọi số nguyên n.

Vậy (3n + 4)2 - 16 luôn chia hết cho 3 với mọi số nguyên n.

2 (Trang 22 Toán 8 VNEN Tập 1)

Tính nhanh giá trị của biểu thức sau:

M = a3 – a2b – ab2 + b3 với a = 5,75; b = 4,25.

Lời giải:

M = a3 – a2b – ab2 + b3

= (a3 + b3) - (a2b + ab2)

= (a + b)(a2 - ab + b2) - ab(a + b)

= (a + b)(a2 - ab + b2 - ab)

= (a + b)(a2 - 2ab + b2)

= (a + b)(a - b)2.

Thay a = 5,75 và b = 4,25 vào M, ta được:

M = (5,75 + 4,25)(5,75 - 4,25)2 = 22,5.

3 (Trang 5 Toán 22 VNEN Tập 1)

Tìm x, biết:

a) x2 + x = 6;

b) 6x3 + x2 = 2x.

Lời giải:

a) x2 + x = 6

⇔ x2 + x - 6 = 0

⇔ x+2 - 2x + 3x - 6 = 0

⇔ x(x - 2) + 3(x - 2) = 0

⇔ (x - 2)(x + 3) = 0

⇔ x = 2 hoặc x = -3.

Vậy x = 2 hoặc x = -3.

b) 6x3 + x2 = 2x

⇔ 6x3 + x2 - 2x = 0

⇔ x(6x2 + x - 2) = 0

⇔ x(6x2 - 3x + 4x - 2) = 0

⇔ x[3x(2x - 1) + 2(2x - 1)] = 0

⇔ x(3x + 2)(2x - 1) = 0

Giải Toán 8 VNEN Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và phối hợp nhiều phương pháp | Giải bài tập Toán 8 VNEN hay nhất

Đọc sách

Xem thêm các bài Giải bài tập Toán lớp 8 chương trình VNEN hay khác:


Giải bài tập lớp 8 sách mới các môn học