Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức

1 (Trang 17 Toán 8 VNEN Tập 1)

a) Điền vào chỗ trống để viết 3x2 - 6x thành một tích của những đa thức:

3x2 - 6x = 3x .......... - 3x.2 = 3x(x - ............).

Lời giải:

3x2 - 6x = 3x.x - 3x.2 = 3x(x - 2).

b) Thực hiện các yêu cầu sau:

- Phân tích các đa thức thành nhân tử:

2x3 - x;

3x2y2 + 12x2y - 15xy2;

5x2(x - 1) - 15x(x - 1);

3x(x - 2y) + 6y(2y - x).

Lời giải:

2x3 - x = x(2x2 - 1);

3x2y2 + 12x2y - 15xy2 = 3xy(xy + 4x - 5y);

5x2(x - 1) - 15x(x - 1) = (x - 1)(5x2 - 15x) = 5x(x - 3)(x - 1);

3x(x - 2y) + 6y(2y - x) = 3x(x - 2y) - 6y(x - 2y) = 3(x - 2y)(x - 2y) = 3(x - 2y)2

- Tìm x sao cho 2x2 - 6x = 0.

Lời giải:

2x2 - 6x = 0 ⇔ 2x(x - 3) = 0 ⇔ 2x = 0 hoặc x - 3 = 0 ⇔ x = 0 hoặc x = 3.

Vậy x = 0 hoặc x = 3.

2 (Trang 18 Toán 8 VNEN Tập 1)

a) Phân tích các đa thức sau thành nhân tử:

x2 - 6x + 9;      4x2 - 36;       8 – x3.

Trả lời:

x2 - 6x + 9 = x2 - 2.x.3 + 32 = (x - 3)2;

4x2 - 36 = (2x)2 – 62 = (2x - 6)(2x + 6);

8 – x + 3 = 23 – x3 = (2 - x)(4 - 2x + x2).

b) Phân tích đa thức A = (2n + 3)2 - 9 thành nhân tử. Từ đó chứng tỏ rằng A chia hết cho 4 với mọi số nguyên n.

Lời giải:

A = (2n + 3)2 - 9 = 4n2 + 12n + 9 - 9 = 4n(n + 3) luôn chia hết cho 4 với mọi số nguyên n.

1 (Trang 19 VNEN Tập 1) (1.1)

Phân tích các đa thức sau thành nhân tử:

Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất

Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất

Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất

2 (Trang 19 Toán 8 VNEN Tập 1)

Tìm x, biết:

Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất

Lời giải:

a) x2(x + 1) + 2x(x + 1) = 0

⇔ x(x + 1)(x + 2) = 0

⇔ x = 0 hoặc x + 1 = 0 hoặc x + 2 = 0

⇔ x = 0 hoặc x = -1 hoặc x = -2.

Vậy x = 0 hoặc x = -1 hoặc x = -2.

b) x(3x - 2) - 5(2 - 3x) = 0

⇔ x(3x - 2) + 5(3x - 2) = 0

⇔ (3x - 2)(x + 5) = 0

⇔ 3x - 2 = 0 hoặc x + 5 = 0

⇔ x = Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất hoặc x = -5.

Vậy x = Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất hoặc x = -5.

Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất

Giải Toán 8 VNEN Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức | Giải bài tập Toán 8 VNEN hay nhất

3 (Trang 19 Toán 8 VNEN Tập 1)

Tính nhanh giá trị của các biểu thức sau:

a) 17.91,5 + 170.0,85;

b) 20162 – 162;

c) x(x - 1) - y(1 - x) tại x = 2001 và y = 2999.

Lời giải:

a) 17.91,5 + 170.0,85 = 17.91,5 + 17.10.0,85 = 17.91,5 + 17.8,5 = 17(91,5 + 8,5) = 17.100 = 1700;

b) 20162 – 162 = (2016 - 16)(2016 + 16) = 2000.2032 = 4064000;

c) x(x - 1) - y(1 - x) = x(x - 1) + y(x - 1) = (x - 1)(x + y).

Tại x = 2001 và y = 2999, ta được: (2001 - 1)(2001 + 2999) = 2000.5000 = 10000000.

1 (Trang 19 Toán 8 VNEN Tập 1)

Chứng minh rằng giá trị biểu thức sau không phụ thuộc vào biến:

a) (x + 2)2 - 2(x + 2)(x - 8) + (x - 8)2;

b) (x + y - z - t)2 - (z + t - x - y)2.

Lời giải:

a) (x + 2)2 - 2(x + 2)(x - 8) + (x - 8)2 = [(x + 2) - (x - 8)]2 = 102 = 100 không phụ thuộc vào giá trị của biến x và y;

b) (x + y - z - t)2 - (z + t - x - y)2 = [(x + y - z - t) - (z + t - x - y)][(x + y - z - t) + (z + t - x - y)] = 0 không phụ thuộc vào giá trị của biến x, y, z, t.

2 (Trang 19 Toán 8 VNEN Tập 1)

Chứng minh rằng với mọi số nguyên n, ta có n3 - n luôn chia hết cho 6.

Lời giải:

Có: n3 - n = n(n2 - 1) = n(n - 1)(n + 1) = (n - 1).n.(n + 1)

Dễ dàng nhận thấy n - 1; n; n + 1 là ba số tự nhiên liên tiếp

Mà tích của 3 số tự nhiêu liên tiếp luôn chia hết cho 2 và 3

Nên n3 - n luôn chia hết cho 6 với mọi số nguyên n.

3 (Trang 19 Toán 8 VNEN Tập 1)

Tìm các cặp số nguyên (x; y) sao cho: x + 3y = xy + 3.

Lời giải:

x + 3y = xy + 3 ⇔ x + 3y - xy - 3 = 0 ⇔ x(1 - y) - 3(1 - y) = 0 ⇔ (x - 3)(1 - y) = 0

⇔ x = 3 hoặc y = 1.

Xem thêm các bài Giải bài tập Toán lớp 8 chương trình VNEN hay khác:


Giải bài tập lớp 8 sách mới các môn học