Giải bài 3 trang 8 SGK Giải Tích 12 nâng cao



Bài 3 (trang 8 sgk Giải Tích 12 nâng cao): Chứng minh rằng các hàm số sau đồng biến trên R.

a)f(x)=x3-6x2+17x+4=0;

b) f(x)=x3+x-cos⁡x-4

Lời giải:

a. Hàm số f(x) = x3 - 6x2 + 17x + 4 = 0 xác định trên R.

Ta có f' (x)=3x2-12x+17=3(x-2)2+5>0 ∀x ∈R.

Nên hàm số đồng biến trên R.

b. Hàm số f(x) xác định trên R.

Và f' (x)=3x2+1+sin⁡x>0 ∀x ∈R

Vì : x2 ≥ 0; 1 + sinx ≥ 0; 3x2 + 1 + sin⁡x = 0 vô nghiệm nên hàm số đồng biến trên R.

Các bài giải bài tập Giải Tích 12 nâng cao Bài 1 Chương 1 khác:


tinh-don-dieu-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học