Sách bài tập Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức
Bài 12 trang 7 Sách bài tập Toán 9 Tập 1: Tìm x để căn thức sau có nghĩa:
Lời giải:
a. Ta có:
có nghĩa khi và chỉ khi:
-2x + 3 ≥ 0 ⇒ -2x ≥ -3 ⇒ x ≤ 3/2
b. Ta có:
có nghĩa khi và chỉ khi:
2/x2 ≥ 0 ⇒ x2 > 0 ⇒ x ≠ 0
c. Ta có:
có nghĩa khi và chỉ khi:
> 0 ⇒ x + 3 > 0 ⇒ x > -3
d. Ta có: x2 ≥ 0 với mọi x nên x2 + 6 > 0 với mọi x
Suy ra
< 0 với mọi x
Vậy không có giá trị nào của x để
có nghĩa.
Bài 13 trang 7 Sách bài tập Toán 9 Tập 1: Rút gọn rồi tính:
Lời giải:
Bài 14 trang 7 Sách bài tập Toán 9 Tập 1: Rút gọn các biểu thức sau:
Lời giải:
Bài 15 trang 7 Sách bài tập Toán 9 Tập 1: Chứng minh:
Lời giải:
a. Ta có:
VT = 9 + 4√5 = 4 + 2.2√5 + 5 = 22 + 2.2√5 + (√5 )2 = (2 + √5 )2
Vế trái bằng vế phải nên đẳng thức được chứng minh.
b. Ta có:
Vế trái bằng vế phải nên đẳng thức được chứng minh.
c. Ta có:
VT = (4 - √7 )2 = 42 – 2.4.√7 + (√7 )2 = 16 – 8√7 + 7 = 23 - 8√7
Vế trái bằng vế phải nên đẳng thức được chứng minh.
d. Ta có:
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Bài 16 trang 7 Sách bài tập Toán 9 Tập 1: Biểu thức sau đây xác định với giá trị nào của x?
Lời giải:
Bài 17 trang 8 Sách bài tập Toán 9 Tập 1: Tìm x, biết:
Lời giải:
= 2x + 1 ⇔ |3x| = 2x + 1 (1)
* Trường hợp 1: 3x ≥ 0 ⇔ x ≥ 0 ⇒ |3x| = 3x
Suy ra: 3x = 2x + 1 ⇔ 3x - 2x = 1 ⇔ x = 1
Giá trị x = 1 là nghiệm của phương trình (1).
* Trường hợp 2: 3x < 0 ⇔ x < 0 ⇒ |3x| = -3x
Suy ra: -3x = 2x + 1 ⇔ -3x - 2x = 1 ⇔ -5x = 1 ⇔ x = - 1/5
Giá trị x = - 1/5 thỏa mãn điều kiện x < 0
Vậy x = - 1/5 là nghiệm của phương trình (1).
Vậy x = 1 và x = - 1/5
⇔ |x + 3| = 3x - 1 (2)
* Trường hợp 1: x + 3 ≥ 0 ⇔ x ≥ -3 ⇒ |x + 3| = x + 3
Suy ra: x + 3 = 3x - 1 ⇔ x - 3x = -1 - 3 ⇔ -2x = -4 ⇔ x = 2
Giá trị x = 2 thỏa mãn điều kiện x ≥ -3.
Vậy x = 2 là nghiệm của phương trình (2).
* Trường hợp 2: x + 3 < 0 ⇔ x < -3 ⇒ |x + 3| = -x - 3
Suy ra: -x - 3 = 3x - 1 ⇔ -x - 3x = -1 + 3 ⇔ -4x = 2 ⇔ x = -0.5
Giá trị x = -0,5 không thỏa mãn điều kiện x < -3: loại
Vậy x = 2
= 5 ⇔ |1 - 2x| = 5 (3)
* Trường hơp 1: 1 - 2x ≥ 0 ⇔ 2x ≤ 1 ⇔ x ≤ 1/2 ⇒ |1 - 2x| = 1 - 2x
Suy ra: 1 - 2x = 5 ⇔ -2x = 5 - 1 ⇔ x = -2
Giá trị x = -2 thỏa mãn điều kiện x ≤ 1/2
Vậy x = -2 là nghiệm của phương trình (3).
* Trường hợp 2: 1 - 2x < 0 ⇔ 2x > 1 ⇔ x > 12 ⇒ |1 - 2x| = 2x - 1
Suy ra: 2x - 1 = 5 ⇔ 2x = 5 + 1 ⇔ x = 3
Giá trị x = 3 thỏa mãn điều kiện x > 1/2
Vậy x = 3 là nghiệm của phương trình (3).
Vậy x = -2 và x = 3.
⇔ |x2| = 7 ⇔ x2 = 7
Vậy x = √7 và x = - √7 .
Bài 18 trang 8 Sách bài tập Toán 9 Tập 1: Phân tích thành nhân tử:
a. x2 - 7 b. x2 - 2√2 x + 2 c. x2 + 2√13 x + 13
Lời giải:
a. Ta có: x2 - 7 = x2 - (√7 )2 = (x + √7 )(x - √7 )
b. Ta có: x2 - 2√2 x + 2 = x2 - 2.x.√2 + (√2 )2 = (x - √2 )2
c. Ta có: x2 + 2√13 x + 13 = x2 + 2.x.√13 + (√13 )2 = (x + √13 )2
Bài 19 trang 8 Sách bài tập Toán 9 Tập 1: Rút gọn các phân thức:
Lời giải:
Bài 20 trang 8 Sách bài tập Toán 9 Tập 1: So sánh(không dùng bảng số hay máy tính bỏ túi):
a. 6+2√2 và 9 b. √2 + √3 và 3
c. 9 + 4√5 và 16 d. √11 - √3 và 2
Lời giải:
a. 6+2√2 và 9
Ta có: 9 = 6 + 3
So sánh: 2√2 và 3 vì 2√2 > 0 và 3 > 0
Ta có: (2√2 )2=22.(√2)2=4.2=8
32= 9
Vì 8 < 9 nên : (2√2 )2 < 32
Vậy 6+2√2 < 9.
b. √2 + √3 và 3
Ta có: ( √2 + √3)2= (√2)2.(√3)2=2.3=6
22=4
Vì 6 > 4 nên (√2.√3)2 > 22
Suy ra: √2.√3 > 2 ⇒ 2. √2.√3 > 2.2 ⇒ 5 + 2. √2.√3 > 4 + 5
⇒ 5 + 2. √2.√3 > 9 ⇒ ( √2 + √3)2 > 9 ⇒ ( √2 + √3)2 > 32
Vậy √2 + √3 > 3
c. 9 + 4√5 và 16
So sánh 4√5 và 5
Ta có: 16 > 5 ⇒ √16 > √5 ⇒ 4 > √5
Vì √5 > 0 nên 4. √5 > √5.√5 ⇒ 4√5 > 5 ⇒ 9 + 4√5 > 5 + 9
Vậy 9 + 4√5 > 16
d. √11 - √3 và 2
Vì √11 > √3 nên √11 - √3 > 0
Ta có: (√11 - √3)2 = 11 - 2√11.√3 + 3 = 14 - 2√11.√3
22 = 4 = 14 – 10
So sánh 10 và 2√11.√3 hay so sánh giữa 5 và √11.√3
Ta có: 52 = 25
(√11.√3 )2 = (√11)2.(√3)2 = 11.3 = 33
Vì 25 < 33 nên 52 < (√11.√3 )2
Suy ra: 5 < (√11.√3 )2
Suy ra: 14 – 10 > 14 - 2√11.√3 ⇒ (√11 - √3)2 < 22
Vậy √11 - √3 < 2
Bài 21 trang 8 Sách bài tập Toán 9 Tập 1: Rút gọn các biểu thức:
Lời giải:
Bài 22 trang 8 Sách bài tập Toán 9 Tập 1: Với n là số tự nhiên, chứng minh đẳng thức:
Viết đẳng thức trên khi n là 1, 2, 3, 4, 5, 6, 7
Lời giải:
Bài 2 trang 8 Sách bài tập Toán 9 Tập 1: Đẳng thức nào đúng nếu x là số âm
A. √(9x2 ) = 9x; B. √(9x2 ) = 3x;
C. √(9x2 ) = -9x; D. √(9x2 ) = -3x.
Hãy chọn đáp án đúng.
Lời giải:
Chọn đáp án D
Xem thêm Video Giải sách bài tập Toán lớp 9 (SBT Toán 9) hay và chi tiết khác:
- Bài 3: Liên hệ giữa phép nhân và phép khai phương
- Bài 4: Liên hệ giữa phép chia và phép khai phương
- Bài 5: Bảng căn bậc hai
- Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:
- Giải bài tập Toán 9
- Chuyên đề Toán 9 (có đáp án - cực hay)
- Lý thuyết & 500 Bài tập Toán 9 (có đáp án)
- Các dạng bài tập Toán 9 cực hay
- Đề thi Toán 9
- Đề thi vào 10 môn Toán
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều