Bài 9 trang 157 SBT Toán 9 Tập 1



Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn

Bài 9 trang 157 Sách bài tập Toán 9 Tập 1: Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E

a. Chứng minh rằng CD ⊥ AB, BE ⊥ AC

b. Gọi K là giao điểm của BE và CD. Chứng minh rằng AK vuông góc với BC.

Lời giải:

a. Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại D.

Suy ra: CD ⊥ AB.

Tam giác BCE nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại E.

Suy ra: BE ⊥ AC.

b. K là giao điểm của hai đường cao CD và BE nên K là trực tâm của tam giác ABC

Suy ra: AK ⊥ BC

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


bai-1-su-xac-dinh-duong-tron-tinh-chat-doi-xung-cua-duong-tron.jsp


Giải bài tập lớp 9 sách mới các môn học