Bài 12 trang 158 SBT Toán 9 Tập 1



Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn

Bài 12 trang 158 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt đường tròn ở D.

a. Vì sao AD là đường kính của đường tròn (O)?

b. Tính số đo góc ACD

c. Cho BC = 24cm, AC = 20cm. Tính đường cao AH và bán kính đường tròn (O)

Lời giải:

a. Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.

Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O thuộc AD.

Suy ra AD là đường kính của (O).

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b. Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc ACD = 90o.

c. Ta có: AH ⊥ BC ⇒ HB = HC = BC/2 = 24/2 = 12(cm)

Áp dụng định lí Pitago vào tam giác vuông ACH ta có:

AC2 = AH2 + HC2

Suy ra: AH2 = AC2 - HC2 = 202 - 122 = 400 - 144 = 256

AH = 16 (cm)

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

AC2 = AH.AD ⇒ AD = AC2/AH = 202/16 = 25 (cm)

Vậy bán kính của đường tròn (O) là: R = AD/2 = 25/2 = 12,5 (cm)

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


bai-1-su-xac-dinh-duong-tron-tinh-chat-doi-xung-cua-duong-tron.jsp


Giải bài tập lớp 9 sách mới các môn học