Bài 3 trang 106 SBT Toán 9 Tập 2



Bài 6: Cung chứa góc

Bài 3 trang 106 Sách bài tập Toán 9 Tập 2: Cho tam giác ABC có ba góc nhọn. Xác định vị trí của điểm M trong tam giác sao cho MA + MB + MC nhỏ nhất.

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong ΔABC ta lấy điểm M. Nối MA, MB, MC.

Ta cần làm xuất hiện tổng MA + MB + MC sau đó tìm điều kiện để tổng đó nhỏ nhất.

Lấy MC làm cạnh dựng trên nửa mặt phẳng bờ BC chứa điểm A tam giác đều MCN. Suy ra: CM = MN.

Lấy AC làm cạnh dựng trên nửa mặt phẳng bờ AC không chứa điểm B tam giác đều APC. Khi đó, CA = CP

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét ΔAMC và ΔPNC:

CM = CN (vì ΔMCN đều)

CA = CP (vì ΔAPC đều)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: ΔAMC = ΔPNC (c.g.c)

⇒ PN = AM

MA + MB + MC = NP + MB + MN

Ta có ΔABC cho trước nên điểm P cố định nên BM + MN + NP ngắn nhất khi 4 điểm B, M, N, P thẳng hàng.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


bai-6-cung-chua-goc.jsp


Giải bài tập lớp 9 sách mới các môn học