Toán 8 Luyện tập trang 31-32)

Bài 40 trang 31 SGK Toán 8 Tập 2 - Video giải tại 0:15) Năm nay, tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương thôi. Hỏi năm nay Phương bao nhiêu tuổi?

Lời giải:

* Phân tích:

Tuổi Phương Tuổi mẹ
Năm nay x 3x
13 năm sau x + 13 3x + 13

Sử dụng dữ kiện 13 năm sau tuổi mẹ chỉ gấp hai lần tuổi Phương nên ta có phương trình:

3x + 13 = 2(x + 13)

* Giải:

Gọi x là tuổi Phương năm nay (x > 0; x ∈ N )

Tuổi của mẹ năm nay là: 3x

Tuổi Phương 13 năm sau: x + 13

Tuổi của mẹ 13 năm sau: 3x + 13

13 năm nữa tuổi mẹ chỉ gấp 2 lần tuổi Phương nên ta có phương trình:

3x + 13 = 2(x + 13)

⇔ 3x + 13 = 2x + 26

⇔ 3x – 2x = 26 – 13

⇔ x = 13 (thỏa mãn điều kiện xác định)

Vậy năm nay Phương 13 tuổi.

Bài 41 trang 31 SGK Toán 8 Tập 2 - Video giải tại 3:05) : Một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu 370. Tìm số ban đầu.

Lời giải:

* Phân tích:

Với một số có hai chữ số bất kì ta luôn có: Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Khi thêm chữ số 1 xen vào giữa ta được số: Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vì chữ số hàng đơn vị gấp 2 lần chữ số hàng chục nên ta có y = 2x.

Số mới lớn hơn số ban đầu 370 nên ta có phương trình:

100x + 10 + 2x = 10x + 2x + 370.

* Giải:

Gọi chữ số hàng chục của số cần tìm là x (x ∈ N; 0 < x ≤ 9).

⇒ Chữ số hàng đơn vị là 2x

⇒ Số cần tìm bằng Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Sau khi viết thêm chữ số 1 vào giữa hai chữ số ta được số mới là:

Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Theo đề bài số mới lớn hơn số ban đầu 370, ta có B = A + 370 nên ta có phương trình

102x + 10 = 12x + 370

⇔ 102x – 12x = 370 – 10

⇔ 90x = 360

⇔ x = 4 (thỏa mãn)

Vậy số cần tìm là 48.

*Lưu ý : Vì chỉ có 4 số có hai chữ số thỏa mãn điều kiện chữ số hàng đơn vị gấp đôi chữ số hàng chục là : 12 ; 24 ; 36 ; 48 nên ta có thể đi thử trực tiếp mà không cần giải bằng cách lập phương trình.

Bài 42 trang 31 SGK Toán 8 Tập 2 - Video giải tại 7:42) : Tìm số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải số đó thì ta được một số lớn hơn gấp 153 lần số ban đầu.

Lời giải:

Gọi số có hai chữ số cần tìm là Giải bài 42 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Khi viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải thì ta được số mới là Giải bài 42 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Theo đề bài, số mới gấp 153 lần số ban đầu nên ta có phương trình :

Giải bài 42 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy số cần tìm là 14.

* Lưu ý : Ở bài toán này ta coi cả số Giải bài 42 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 là một ẩn.

Các bạn có thể đặt ẩn đơn giản là x hoặc A … nhưng khi phân tích số Giải bài 42 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 thì các bạn cần lưu ý nó là số có 4 chữ số nên Giải bài 42 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 , nếu bạn phân tích thành Giải bài 42 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 là sai.

Bài 43 trang 31 SGK Toán 8 Tập 2 - Video giải tại 11:39) : Tìm phân số có đồng thời các tính chất sau:

a) Tử số của phân số là số tự nhiên có một chữ số;

b) Hiệu giữa tử số và mẫu số bằng x - 4;(x ≠ 4).

c) Nếu giữ nguyên tử số và viết thêm vào bên phải của mẫu số một chữ số đúng bằng tử số, thì ta được một phân số bằng phân số 1/5.

Lời giải:

Gọi tử số của phân số cần tìm là x (0 < x < 10, x ∈ N).

+ Tử số là số tự nhiên có một chữ số nên ta có điều kiện 0 < x < 10.

+ Hiệu giữa tử số và mẫu số bằng 4 nên mẫu số bằng x – 4.

+ Viết thêm chữ số đúng bằng tử số vào bên phải của mẫu số ta được mẫu số mới là:

Giải bài 43 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Phân số mới bằng 1/5 nên ta có phương trình :

Giải bài 43 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy không có phân số thỏa mãn yêu cầu đề bài.

Bài 44 trang 31 SGK Toán 8 Tập 2 - Video giải tại 17:03) : Điểm kiểm tra Toán của một lớp được cho trong bảng dưới đây:

Điểm (x) 1 2 3 4 5 6 7 8 9 10
Tần số (f) 0 0 2 * 10 12 7 6 4 1 N = *

trong đó có 2 ô còn trống (thay bằng dấu *). Hãy điền số thích hợp vào ô trống, nếu điểm trung bình của lớp là 6,06.

Lời giải:

Gọi x là tần số của điểm 4 (x > 0; x ∈ N)

Số học sinh của lớp:

2 + x + 10 + 12 + 7 + 6 + 4 + 1 = 42 + x

Vì điểm trung bình bằng 6,06 nên:

Giải bài 44 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ 6 + 4x + 50 + 72 + 49 + 48 + 36 + 10 = 6,06(42 + x)

⇔ 271 + 4x = 254,52 + 6,06x ⇔ 16,48 = 2,06x

⇔ x = 8 (thỏa mãn điều kiện đặt ra)

Vậy ta có kết quả điền vào như sau:

Điểm (x) 1 2 3 4 5 6 7 8 9 10
Tần số (f) 0 0 2 8 10 12 7 6 4 1 N = 50

Bài 45 trang 31 SGK Toán 8 Tập 2 - Video giải tại 23:48) : Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 20 ngày. Do cải tiến kĩ thuật, năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy, chỉ trong 18 ngày, không những xí nghiệp đã hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nữa. Tính số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng.

Lời giải:

Cách 1:

* Phân tích:

Ta có: Số sản phẩm dệt được = năng suất . số ngày dệt.

Năng suất Số ngày dệt Tổng sản phẩm
Dự tính x 20 20.x
Thực tế sau khi cải tiến x + 20%.x = 1,2x 18 18.1,2.x

Thực tế dệt được nhiều hơn dự tính 24 tấm nên ta có phương trình:

18.1,2x = 20x + 24

* Giải:

Gọi x là năng suất dự tính của xí nghiệp (sản phẩm/ngày); (x ∈ N*) .

⇒ Số thảm len dệt được theo dự tính là: 20x (thảm).

Sau khi cải tiến, năng suất của xí nghiệp đã tăng 20% nên năng suất trên thực tế là: x + 20%.x = x + 0,2x = 1,2x (sản phẩm/ngày).

Sau 18 ngày, xí nghiệp dệt được: 18.1,2x = 21,6.x (thảm).

Vì sau 18 ngày, xí nghiệp không những hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nên ta có phương trình:

21,6.x = 20x + 24

⇔ 21,6x – 20x = 24

⇔ 1,6x = 24

⇔ x = 15 (thỏa mãn)

Vậy số thảm mà xí nghiệp phải dệt ban đầu là: 20.15 = 300 (thảm).

Cách 2:

Gọi x là số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng (x ∈ N*) ( tấm)

Số tấm thảm len mỗi ngày dự định dệt là: Giải bài 45 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 ( tấm ).

Số tấm thảm len thực tế đã dệt là x + 24 ( tấm) .

Trên thực tế, số tấm thảm len mỗi ngày dệt được là: Giải bài 45 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 tấm

Vì năng suất của xí nghiệp tăng 20% nên số thảm thực tế dệt được trong một ngày bằng ( 1+ 20%) = 120% số thảm dự định dệt trong 1 ngày. Ta có phương trình:

Giải bài 45 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Bài 46 trang 31-32 SGK Toán 8 Tập 2 - Video giải tại 29:56) : Một người lái ô tô dự định đi từ A đến B với vận tốc 48km/h. Nhưng sau khi đi được 1 giờ với vận tốc ấy, ô tô bị tàu hỏa chắn đường trong 10 phút. Do đó, để kịp đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 6km/h. Tính quãng đường AB.

Lời giải:

* Phân tích:

Ta luôn có: Quãng đường = vận tốc . thời gian

Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi C là địa điểm ô tô gặp tàu hỏa.

Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên S AC = 48km.

Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h).

Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).

Quãng đường BC Vận tốc Thời gian
Dự tính x 48 Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8
Thực tế x 48 + 6 = 54 Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Ta có phương trình: Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

* Giải:

Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi C là địa điểm ô tô gặp tàu hỏa.

Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ

⇒ S AC = 48.1 = 48 (km).

Gọi quãng đường BC dài là x (km; x > 0).

Vận tốc dự tính đi trên BC là: 48 km/h

⇒ Thời gian dự tính đi quãng đường BC hết: Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 (giờ).

Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).

⇒ Thời gian thực tế ô tô đi quãng đường BC là: Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 (giờ).

Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).

Do đó ta có phương trình:

Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ x = 72 (thỏa mãn) nên quãng đường BC là 72 (km).

Vậy quãng đường AB là:

S AB = S AC + S BC = 48 + 72 = 120 (km).

Bài 47 trang 32 SGK Toán 8 Tập 2 - Video giải tại 38:24) : Bà An gửi vào quỹ tiết kiệm x nghìn đồng với lãi suất mỗi tháng là a% (a là một số cho trước) và lãi tháng này được tính gộp vào vốn cho tháng sau.

a) Hãy viết biểu thức biểu thị:

   + Số tiền lãi sau tháng thứ nhất;

   + Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất;

   + Tổng số tiền lãi có được sau tháng thứ hai.

b) Nếu lãi suất là 1,2% (tức là a = 1,2) và sau 2 tháng tổng số tiền lãi là 48,288 nghìn đồng, thì lúc đầu bà An đã gửi bao nhiêu tiền tiết kiệm?

Lời giải:

a) Bà An gửi vào quỹ tiết kiệm: x đồng (x > 0).

Lãi suất mỗi tháng là a% tháng nên số tiền lãi sau tháng thứ nhất bằng: a%.x

Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất: x + a%.x = (1 + a%)x

Số tiền lãi sau tháng thứ hai: (1 + a%)x.a%

Tổng số tiền lãi sau hai tháng bằng: a%.x + (1 + a%).x.a% (đồng) (1)

b) Vì sau hai tháng bà An lãi 48288 đồng với lãi suất 1,2% (tức là a = 1,2) nên thay vào (1) ta có phương trình:

1,2%.x + (1 + 1,2%).x.1,2% = 48288

⇔ 0,012x + 1,012.x.0,012 = 48288

⇔ 0,012x + 0,012144x = 48288

⇔ 0,024144.x = 48288

⇔ x = 2 000 000 (đồng).

Vậy bà An đã gửi tiết kiệm 2 000 000 đồng.

Bài 48 trang 32 SGK Toán 8 Tập 2 - Video giải tại 44:50 ) : Năm ngoái, tổng số dân của hai tỉnh A và B là 4 triệu. Năm nay, dân số của tỉnh A tăng thêm 1,1%, còn dân số của tỉnh B tăng thêm 1,2%. Tuy vậy số dân của tỉnh A năm nay vẫn nhiều hơn tỉnh B là 807200 người. Tính số dân năm ngoái của mỗi tỉnh.

Lời giải:

* Phân tích:

Năm ngoái Năm nay
Tỉnh A x x + x.1,1% = 1,011.x
Tỉnh B 4 – x (4 – x) + (4 – x).1,2% = (4 – x).1,012

Dân số tỉnh A năm nay nhiều hơn dân số tỉnh B là 807200 người = 0,8072 (triệu người) nên ta có phương trình:

1,011.x - 1,012.(4 – x) = 0,8072.

* Giải:

Gọi x là số dân năm ngoái của tỉnh A (0 < x < 4; x ∈ N*; triệu người)

Số dân năm ngoái của tỉnh B: 4 – x (triệu người).

Năm nay dân số của tỉnh A tăng 1,1 % nên số dân của tỉnh A năm nay: x + 1,1% x = 1,011.x

Năm nay dân số của tỉnh B tăng 1,2 % nên số dân của tỉnh B năm nay: (4 – x) + 1,2% (4 – x) = 1,012(4 – x)

Vì số dân tỉnh A năm nay hơn tỉnh B là 807200 người = 0,8072 triệu người nên ta có phương trình:

1,011.x - 1,012(4 – x) = 0,8072

⇔ 1,011x – 4,048 + 1,012x = 0,8072

⇔ 2,023. x = 4,8552

⇔ x = 2,4 (thỏa mãn).

Vậy dân số của tỉnh A năm ngoái là 2,4 triệu người, dân số tỉnh B năm ngoái là 4 – 2,4 = 1,6 triệu người

Bài 49 trang 32 SGK Toán 8 Tập 2 - Video giải tại 51:38) : Đố: Lan có một miếng bìa hình tam giác ABC vuông tại A, cạnh AB = 3cm. Lan tính rằng nếu cắt từu miếng bìa đó ra một hình chữ nhật có chiều dài 2cm như hình 5 thì hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa ban đầu. Tính độ dài cạnh AC của tam giác ABC.

Giải bài 49 trang 32 SGK Toán 8 Tập 2 | Giải toán lớp 8

Lời giải:

Gọi x (cm) là độ dài cạnh AC (x > 2).

Gọi hình chữ nhật là MNPA như hình vẽ.

Ta có: MC = AC – AM = x – 2 (cm)

Vì MN // AB nên theo định lý Talet ta có tỉ lệ:

Giải bài 49 trang 32 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vì diện tích tam giác ABC gấp đôi diện tích hình chữ nhật MNPA nên ta có phương trình:

Giải bài 49 trang 32 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy độ dài đoạn thẳng AC là 4cm.

Xem thêm Video Giải bài tập Toán lớp 8 hay và chi tiết khác:


Giải bài tập lớp 8 sách mới các môn học