Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau: a) 2x(x – 3) + 5(x – 3) = 0



Bài 4: Phương trình tích

Bài 22 trang 17 SGK Toán 8 Tập 2: Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau:

a) 2x(x – 3) + 5(x – 3) = 0;

b) (x2 – 4) + (x – 2)(3 – 2x) = 0;

c) x3 – 3x2 + 3x – 1 = 0;

d) x(2x – 7) – 4x + 14 = 0;

e) (2x – 5)2 – (x + 2)2 = 0;

f) x2 – x – (3x – 3) = 0.

Lời giải:

a) 2x(x – 3) + 5(x – 3) = 0

⇔ (2x + 5)(x – 3) = 0

⇔ 2x + 5 = 0 hoặc x – 3 = 0

+ 2x + 5 = 0 ⇔2x = -5 ⇔ x = -5/2

+ x – 3 = 0 ⇔x = 3.

Vậy phương trình có tập nghiệm Giải bài 22 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

b) (x2 – 4) + (x – 2)(3 – 2x) = 0

⇔ (x – 2)(x + 2) + (x – 2)(3 – 2x) = 0

⇔ (x – 2)[(x + 2) + (3 – 2x)] = 0

⇔ (x – 2)(5 – x) = 0

⇔ x – 2 = 0 hoặc 5 – x = 0

+ x – 2 = 0 ⇔ x = 2

+ 5 – x = 0 ⇔ x = 5.

Vậy tập nghiệm của phương trình là S = {2; 5}.

c) x3 – 3x2 + 3x - 1 = 0

⇔ (x – 1)3 = 0 (Hằng đẳng thức)

⇔ x – 1 = 0

⇔ x = 1.

Vậy tập nghiệm của phương trình là S={1}.

d) x(2x – 7) – 4x + 14 = 0

⇔ x.(2x - 7) – (4x – 14) = 0

⇔ x(2x – 7) – 2(2x – 7) = 0

⇔(x – 2)(2x – 7) = 0

⇔ x – 2 = 0 hoặc 2x – 7 = 0

+ x – 2 = 0 ⇔ x = 2.

+ 2x – 7 = 0 ⇔ 2x = 7 ⇔ x = 7/2

Vậy tập nghiệm của phương trình là Giải bài 22 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

e) (2x – 5)2 – (x + 2)2 = 0

⇔ [(2x – 5) + (x + 2)].[(2x – 5) – (x + 2)]= 0

⇔ (2x – 5 + x + 2).(2x – 5 – x - 2) = 0

⇔ (3x – 3)(x – 7) = 0

⇔ 3x – 3 = 0 hoặc x – 7 = 0

+ 3x – 3 = 0 ⇔3x = 3 ⇔ x = 1.

+ x – 7 = 0 ⇔ x = 7.

Vậy phương trình có tập nghiệm S = {1; 7}.

f) x2 – x – (3x – 3) = 0

⇔ x(x – 1) – 3(x – 1) = 0

⇔ (x – 3)(x – 1) = 0

⇔ x – 3 = 0 hoặc x – 1 = 0

+ x – 3 = 0 ⇔ x = 3

+ x – 1 = 0 ⇔ x = 1.

Vậy phương trình có tập nghiệm S = {1; 3}.

Kiến thức áp dụng

+ Các cách phân tích đa thức thành nhân tử: Đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử hoặc kết hợp nhiều phương pháp.

+ Một tích bằng 0 nếu có ít nhất một trong các thừa số của tích bằng 0.

A(x) . B(x) . C(x) …. = 0

⇔ A(x) = 0 hoặc B(x) = 0 hoặc C(x) = 0 hoặc …

Tham khảo các bài giải bài tập Giải bài tập Toán lớp 8 Bài 4 khác:


bai-4-phuong-trinh-tich.jsp


Giải bài tập lớp 8 sách mới các môn học