Hãy phát biểu và chứng minh các trường hợp còn lại của nhận xét trên (xem như những bài tập)
Bài 9: Tính chất ba đường cao của tam giác - Luyện tập trang 83)
Trả lời câu hỏi Toán 7 Tập 2 Bài 9 trang 82: Hãy phát biểu và chứng minh các trường hợp còn lại của nhận xét trên (xem như những bài tập).
Lời giải
- Bài tập 1: Nếu một tam giác có một đường trung trực đồng thời là đường phân giác thì tam giác đó là một tam giác cân
Xét ΔABC có AI vừa là đường trung trực vừa là đường phân giác
AI là đường trung trực ⇒ AI ⊥ BC và I là trung điểm BC
Xét hai tam giác vuông ΔABI và ΔACI có:
AI chung
∠(BAI) = ∠(CAI) (do AI là phân giác góc BAC)
⇒ ΔABI = ΔACI (góc nhọn – cạnh góc vuông)
⇒ AB = AC (hai cạnh tương ứng)
⇒ ΔABC cân tại A
- Bài tập 2: Nếu một tam giác có một đường trung trực đồng thời là đường cao thì tam giác đó là một tam giác cân
Xét ΔABC có AI vừa là đường trung trực vừa là đường cao
⇒ AI ⊥ BC và I là trung điểm BC
Xét hai tam giác vuông ΔABI và ΔACI có:
AI chung
IB = IC ( do I là trung điểm BC)
⇒ ΔABI = ΔACI (hai cạnh góc vuông)
⇒ AB = AC (hai cạnh tương ứng)
⇒ ΔABC cân tại A
- Bài tập 3: Nếu một tam giác có một đường phân giác đồng thời là đường cao thì tam giác đó là một tam giác cân
Xét ΔABC có AI vừa là đường phân giác vừa là đường cao
AI là đường cao ⇒ AI ⊥ BC
Xét hai tam giác vuông ΔABI và ΔACI có:
AI chung
∠(BAI) = ∠(CAI) (do AI là phân giác góc BAC)
⇒ ΔABI = ΔACI (góc nhọn – cạnh góc vuông)
⇒ AB = AC (hai cạnh tương ứng)
⇒ ΔABC cân tại A
- Bài tập 4: Nếu một tam giác có một đường trung tuyến đồng thời là đường cao thì tam giác đó là một tam giác cân
Xét ΔABC có AI vừa là đường trung tuyến vừa là đường cao
AI là đường cao ⇒ AI ⊥ BC
AI là đường trung tuyến ⇒ I là trung điểm BC
Xét hai tam giác vuông ΔABI và ΔACI có:
AI chung
IB = IC ( do I là trung điểm BC)
⇒ ΔABI = ΔACI (hai cạnh góc vuông)
⇒ AB = AC (hai cạnh tương ứng)
⇒ ΔABC cân tại A
Các bài giải Toán 7 Tập 2 khác:
Trả lời câu hỏi Toán 7 Tập 2 Bài 9 trang 81 : Dùng eke vẽ 3 đường cao của tam giác ABC....
Bài 59 trang 83 sgk Toán lớp 7 Tập 2: Cho hình 57. a) Chứng minh NS ⊥ LM. ...
Bài 61 trang 83 sgk Toán lớp 7 Tập 2: Cho tam giác ABC không vuông. Gọi H là trực tâm của nó. ...
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều