Hãy chứng minh định lí đảo của định lí trên: Nếu tam giác có hai đường trung tuyến bằng nhau



Bài 4: Tính chất ba đường trung tuyến của tam giác

Luyện tập trang 67 sgk Toán 7 Tập 2

Bài 27 trang 67 sgk Toán lớp 7 Tập 2: Hãy chứng minh định lí đảo của định lí trên: Nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.

Lời giải:

Giải bài 27 trang 67 sgk Toán lớp 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 sgk Toán lớp 7 Tập 2 | Giải toán lớp 7

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 sgk Toán lớp 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

Kiến thức áp dụng

+ Khoảng cách từ một đỉnh tới trọng tâm tam giác bằng 2/3 đội dài đường trung tuyến đi qua đỉnh ấy.

+ Tam giác cân là tam giác có hai cạnh bằng nhau, hai góc bằng nhau. Muốn chứng minh một tam giác là tam giác cân, ta cần chứng minh tam giác có hai cạnh bằng nhau hoặc hai góc bằng nhau.

Xem thêm các bài giải bài tập Toán lớp 7 Bài 4 khác:

Lời giải bài tập lớp 7 sách mới:


tinh-chat-ba-duong-trung-tuyen-cua-tam-giac.jsp


Giải bài tập lớp 7 sách mới các môn học