Bài 3 trang 20 Chuyên đề Toán 12 Chân trời sáng tạo

Bài 3 trang 20 Chuyên đề Toán 12: Người ta muốn thiết kế một lồng nuôi cá có bề mặt hình chữ nhật bao gồm phần mặt nước có diện tích bằng 54 m2 và phần đường đi xung quanh với kích thước (đơn vị: m) như Hình 8. Bề mặt của lồng có chiều dài và chiều rộng bằng bao nhiêu để diện tích phần đường đi là bé nhất?

Bài 3 trang 20 Chuyên đề Toán 12 Chân trời sáng tạo

Lời giải:

Từ hình vẽ, ta tính được kích thước hình chữ nhật phần mặt nước là a – 3 (m) và b – 2 (m). Từ đó suy ra a > 3 và b > 2.

Diện tích phần mặt nước là S1 = (a – 3)(b – 2) = 54 (m2)

Suy ra b=54a3+2(m).

Diện tích phần đường đi là S = ab – 54 = a54a3+254=54aa3+2a54(m2).

Xét hàm số Sa=54aa3+2a54 với a ∈ (3; + ∞).

Ta có S'a=2162a32;

          S'(a) = 0 2162a32=0a32=81a=123;+.

Bảng biến thiên:

Bài 3 trang 20 Chuyên đề Toán 12 Chân trời sáng tạo

Từ bảng biến thiên, ta có min3;+Sa=42, đạt được khi a = 12.

Với a = 12 thì ta có b=54123+2=8.

Vậy bề mặt của lồng có chiều dài và chiều rộng lần lượt là 12 m và 8 m thì diện tích phần đường đi là bé nhất.

Lời giải bài tập Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 sách mới các môn học