Lý thuyết Hàm số lũy thừa lớp 12 (hay, chi tiết)



Bài viết Lý thuyết Hàm số lũy thừa lớp 12 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hàm số lũy thừa.

1. Định nghĩa: Hàm số y = xα với α ∈ R được gọi là hàm số lũy thừa.

2. Tập xác định: Tập xác định của hàm số y = xα là:

    • D = R nếu α là số nguyên dương.

    • D = R \ {0} với α nguyên âm hoặc bằng 0

    • D = (0; +∝) với α không nguyên.

3. Đạo hàm: Hàm số y = xα có đạo hàm với mọi x > 0 và (xα)' = α.xα - 1.

4. Tính chất của hàm số lũy thừa trên khoảng (0; +∝).

y = xα, α > 0 y = xα, α < 0
a. Tập khảo sát: (0; +∝) a. Tập khảo sát: (0; +∝)

b. Sự biến thiên

+ y' = αxα - 1 > 0, ∀x > 0

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Giới hạn đặc biệt

+ Tiệm cận: không có

b. Sự biến thiên

+ y' = αxα - 1 < 0, ∀x > 0

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Giới hạn đặc biệt

+ Tiệm cận: không có

- Trục 0x là tiệm cận ngang

- Trục 0y là tiệm cận đứng.

c. Bảng biến thiên Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải c. Bảng biến thiên Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    d. Đồ thị:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    Đồ thị của hàm số lũy thừa y = xα luôn đi qua điểm I(1; 1)

    Lưu ý: Khi khảo sát hàm số lũy thừa với số mũ cụ thể, ta phải xét hàm số đó trên toàn bộ tập xác định của nó. Chẳng hạn: y = x3, y = x-2, y = xπ

    Vận dụng thành thạo định nghĩa, tập xác định, cách tính đạo hàm, tính chất của hàm số lũy thừa.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:


ham-so-luy-thua-ham-so-mu-va-ham-so-logarit.jsp


Giải bài tập lớp 12 sách mới các môn học