17 câu trắc nghiệm Cộng, trừ và nhân số phức có đáp án



Với 17 bài tập & câu hỏi trắc nghiệm Cộng, trừ và nhân số phức Toán lớp 12 Giải tích có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán 12.

Câu 1: Cho hai số phức z1 = 2 + 3i, z2 = 1 - 2i . Tìm khẳng định sai

A. z1 + z2 = 3 + i    B. z1 - z2 = 1 + 5i

C. z1.z2 = 8 - i    D.z1. z2 = 8 + i

Tổng của z1 và z2 là z1 + z2 = (2 + 1) + (3 - 2)i = 3 + i

Hiệu của z1 và z2 là z1 - z2 = (2 - 1) + (3 + 2)i = 1 + 5i

Tích của z1 và z2 là z1. z2 = (2 + 3i)(1 - 2i) = 2 - 4i + 3i - 6i2 = 2 - i + 6 = 8 - i

Vậy chọn đáp án D.

Câu 2: Cho hai số phức z1= - 3 + 4i, z2 = 4 - 3i . Môđun của số phức z = z1 + z2 + z1. z2 là

A. 27   B. √27   C. √677   D. 677.

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó z = z1 + z2 + z1. z2 = 1 + i + 25i = 1 + 26i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án C.

Câu 3: Tìm các số thực x, y sao cho: (1 - 2i)x + (1 + 2i)y = 1 + i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có

(1 - 2i)x + (1 + 2i)y = 1 + i <=> (x + y) + (2y - 2x)i = 1 + i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Câu 4: Phần thực và phần ảo của số phức z = (3 + 4i)(4 - 3i) + (2 - i)(3 + 2i) là

A. 32 và 8i   B.32 và 8    C. 18 và -14   D. 32 và -8

Ta có

z = (12 - 9i + 16i - 12i2) + (6 + 4i - 3i - 2i2) = (12 + 7i + 12) + (6 + i + 2) = 32 + 8i

Chọn đáp án B.

Câu 5: Cho các số phức z1 = -1 + i, z2 = 1 - 2i, z3 = 1 + 2i . Giá trị của biểu thức T = |z1z2 + z2z3 + z3z1| là

B. 1   B. √13   C. 5   D. 13.

Ta có:

z2z3 = (1 - 2i)(1 + 2i) = 1 - 4i2 = 5

z1z2 + z1z3 = z1(z2 + z3) = (-1 + i)(1 - 2i + 1 + 2i) = -2 + 2i

Suy ra

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B.

Câu 6: Tổng của hai số phức z1 = 1 - 2i, z2 = 2 - 3i là

A. 2 + 5i   B. 2 – 5i    C. 1 + 5i   D. 1 – 5i.

Tổng của hai số phức z1 = 1 − 2i, z2 = 2 − 3i là:

z = z1 + z2 = 1 – 2i + 2 – 3i = (1 + 2) + (−2 – 3)i = 3 – 5i.

Câu 7: Cho hai số phức z1 = 2 + 3i, z2 = 2 - 4i . Hiệu z1 - z2 bằng

A. 2 + 7i   B. 2 – i   C. 7i   D. – 7i.

Hiệu của hai số phức z1 = 2 + 3i, z2 = 2 - 4i là z = (2 - 2) + (3 -(-4))i = 7i

Câu 8: Tích của hai số phức z1 = 3 + 2i, z2 = 2 - 3i là

A. 6 – 6i    B. 12   C. – 5i    D. 12 – 5i.

Tích của hai số phức z1 = 3 + 2i, z2 = 2 - 3i là:

z = (3 + 2i)(2 - 3i) = 6 - 9i + 4i - 6i2 = 6 - 5i + 6 = 12 - 5i

Câu 9: Số phức z = (1 + i)2 bằng

A. 2i   B. 1 + 3i    C. – 2i    D. 0.

Ta có: z = (1 + i)2 = 1 + 2i + i2 = 1 + 2i - 1 = 2i

Câu 10: Số phức z = (1 - i)3 bằng

A. 1 + i   B. – 2 – 2i    C. – 2 + 2i    D. 4 + 4i

Ta có:

z = (1 - i)3 = 1 - 3i + 3i2 - i3

= 1 - 3i - 3.(-1) - i2i = 1 - 3i - 3 + i = -2 - 2i

Câu 11: Môđun của tổng hai số phức z1 = 3 - 4i và z2 = 4 + 3i là

A. 5√2   B. 8   C. 10    D. 50.

Ta có: z1 + z2 = (3 + 4) + (-4 + 3)i = 7 - i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 12: Cho z = -1 + 3i . Số phức w = iz + 2z bằng

A. 1 + 5i   B. 1 + 7i   C. – 1 + 5i    D. – 1 + 7i

Ta có: z = -1 + 3i => z = -1 - 3i => iz = - i - 3i2 = 3 - i

Suy ra: w = 2z + z = 3 - i + 2(-1 + 3i) = 1 + 5i

Câu 13: Cho z = 1 + 2i . Phần thực và phần ảo của số phức w = 2z + z là

A. 3 và 2    B. 3 và 2i    C. 1 và 6    D. 1 và 6i

Ta có: w = 2z + z = 2(1 + 2i) + (1 - 2i) = 3 + 2i

Vậy phần thực của w là 3, phần ảo của w là 2

Câu 14: Cho số phức z thỏa mãn (1 + 2i)z + z¯ = 2i. Khi đó tích z.z¯ bằng

A. – 2    B. 2    C. – 2i    D. 2i.

Đặt z = a + bi(a, b ∈ R).

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra z = 1 + i. Vậy z.z = |z|2 = 12 + 12 = 2

Câu 15: Môđun của số phức z thỏa mãn 2z + 3(1 - i)iz = 1 - 9i là

A. 5    B. 13     C. √5    D. √13

Đặt z = a + bi (a, b ∈ R). Ta có: z = a - bi và (1 - i)z = (1 - i)(a - bi) = a - bi - ai + bi2 = a - b - (a + b)i Do đó 2z + 3(1 - i)z = 1 - 9i <=> 2(a + bi) + 3[a - b - (a + b)i] = 1 - 9i

<=> (5a - 3b) - (3a + b)i = 1 - 9i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra z = 2 + 3i. Vậy:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 16: Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = |z1 + z2| = 1 . Khi đó |z1 - z2| bằng

A. 0    B. 1   C. 2   D. √3

Cách 1: Đặt z1 = a1 + b 1i, z2 = a2 + b2i (a1, a2, b1, b2 ∈ R). Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2: Ta có: |z1| = |z2| = 1 => z1z1 = z2z2 = 1

|z1| + |z2| = 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy |z1| - |z2| = √3

Câu 17: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 - 2i| = 2 là

A. Đường tròn tâm I(1; -2) bán kính R = 2

B. Đường tròn tâm I(1; -2) bán kính R = 4

C. Đường tròn tâm I(-1; 2) bán kính R = 2

D. Đường tròn tâm I(-1; 2) bán kính R = 4

Đặt z = a + bi(a, b ∈ R). Ta có: z + 1 - 2i = (a + 1) + (b - 2)i. Do đó:

|z + 1 - 2i| = 2 <=> (a + 1)2 + (b - 2)2 = 4

Vậy tập hợp điểm M biểu diễn số phức z là đường tròn tâm I(-1 ;2), bán kính R = 2

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi Tốt nghiệp THPT có đáp án hay khác:




Giải bài tập lớp 12 sách mới các môn học