10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải - Toán lớp 9

Tài liệu câu hỏi 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải Toán lớp 9 chọn lọc, có đáp án với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.

Câu 1: Tìm phương trình đường thẳng (d) đi qua điểm I (0; 1) và cắt parabol (P): y = x2 tại hai điểm phân biệt M và N sao cho 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

A. y = 2x + 1; y = −2x – 1                 

B. y = 2x + 1; y = −2x + 1

C. y = 2x + 1; y = 2x – 1                    

D. y = −2x + 2; y = −2x + 1

Lời giải:

Đường thẳng (d) qua I với hệ số góc a có dạng: y = ax + 1

Phương trình hoành độ giao điểm của (d) và (P) là x2 = ax + 1 ⇔ x2 − ax – 1 = 0 (1)

Vì ∆ = a2 + 4 > 0 với mọi a, (1) luôn có hai nghiệm phân biệt nên (d) luôn cắt (P) tại hai điểm phân biệt M (x1; y1), N (x2; y2) hay M (x1; ax1 + 1), N (x2; ax2 + 1)

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Vậy phương trình đường thẳng cần tìm là y = 2x + 1; y = −2x + 1

Đáp án cần chọn là: B

Câu 2: Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải. Gọi (d) là đường thẳng đi qua I (0; −2) và có hệ số góc k. Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B trên trục hoành. Khi đó tam giác IHK là tam giác?

A. Vuông tại H                        

B. Vuông tại K

C. Vuông tại I                          

D. Đều

Lời giải:

Đường thẳng (d): y = kx – 2

Xét phương trình 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Ta có: ∆ = k2 + 4 > 0 với mọi k; suy ra (1) có hai nghiệm phân biệt

Vậy (d) luôn cắt (P) tại hai điểm phân biệt.

Giả sử (1) có hai nghiệm phân biệt x1; x2

Suy ra A (x1; y1), B (x2; y2) thì H (x1; 0), K (x2; 0)

Khi đó IH2 = x12 + 4, IK2 = x22 + 4, HK2 = (x1 – x2)2

Theo định lý Vi-ét thì x1x2 = −4 nên IH2 + IK2 = x12 + x22 + 8 = KH2

Vậy tam giác IHK vuông tại I

Đáp án cần chọn là: C

Câu 3: Cho Parabol (P): y = x2 và đường thẳng (d): y = mx + 4. Biết đường thẳng (d) luôn cắt đồ thị (P) tại hai điểm phân biệt A, B. Gọi x1; x2 là hoành độ của các điểm A, B. Tìm giá trị lớn nhất của 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Lời giải:

Phương trình hoành độ giao điểm của (d) và (P) là: x2 = mx + 4 ⇔ x2 − mx − 4 = 0. Ta có ∆ = m2 + 16 > 0, với mọi m nên phương trình luôn có 2 nghiệm phân biệt, suy ra đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt.

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Dấu “=” xảy ra khi m2 + 8 = 2m + 7 ⇔ (m – 1)2 = 0 ⇔ m = 1

Suy ra giá trị lớn nhất của Q là 1 khi m = 1

Đáp án cần chọn là: C

Câu 4: Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2x – y – a2 = 0 và parabol (P): y = ax2 (a > 0). Tìm a để (d) cắt (P) tại hai điểm phân biệt A, B. Khi đó có kết luận gì về vị trí của hai điểm A, B

A. Với 0 < a < 1 thì (d) cắt (P) tại hai điểm phân biệt A, B và A, B nằm ở bên phải trục Oy

B. Với  a > 0 thì (d) cắt (P) tại hai điểm phân biệt A, B và A, B nằm ở bên phải trục Oy

C. Với 0 < a < 1 thì (d) cắt (P) tại hai điểm phân biệt A, B và A, B nằm ở bên trái trục Oy

D. Với 0 < a < 1 thì (d) cắt (P) tại hai điểm phân biệt A, B và A, B nằm ở hai phía với trục Oy

Lời giải:

Ta có (d): 2x – y – a2 = 0 ⇔ y = 2x − a2

Xét phương trình ax2 = 2x – a2  ax2 – 2x + a2 = 0 (1) ⇔  ∆' > 0 ⇔ a < 1

Kết hợp với điều kiện a > 0 ta có 0 < a < 1 khi đó (1) có hai nghiệm xA; xB (xA; xB là  hoành độ của A và B) thỏa mãn 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải (hệ thức Vi-ét) suy ra xA; xB dương nên A, B nằm ở bên phải trục Oy.

Đáp án cần chọn là: A

Vận dụng cao: Gọi là hoành độ của A và B. Tìm giá trị nhỏ nhất của biểu thức 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Lời giải:

Theo câu trước ta có xA; xB là  hai nghiệm của phương trình ax2 – 2x + a2 = 0

Theo định lý Vi-ét ta có: 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Ta có: 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải, với a > 0 theo bất đẳng thức Cô-si cho hai số dương ta có:

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Đáp án cần chọn là: C

Câu 5: Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1. Gọi A (x1; y1) và B (x2; y2) là các giao điểm của (d) và (P). Tìm m để biểu thức M = (y1 − 1)( y2 − 1) đạt giá trị lớn nhất.

A. m = 0     

B. m = 2     

C. m = 1     

D. m = −1

Lời giải:

Phương trình hoành độ giao điểm của đường thẳng và Parabol là:

x2 = mx + 1 ⇔ x2 – mx – 1 = 0 (1)

∆ = m2 + 4 > 0 với mọi m nên 91) có hai nghiệm phân biệt, suy ra (d) luôn cắt (P) tại hai điểm phân biệt A (x1; y1) và B (x2; y2) với x1; x2 là hai nghiệm của phương trình (1).

Theo định lý Vi-ét, ta có: x1 + x2 = m; x1.x2 = −1

Vì A; B  ∈(P) ⇒ y1 = x12; y2 = x22

Ta có

M = (y1 − 1)(y2 − 1) = (x12− 1) (x2− 1) = x12. x22 – (x12 + x22) + 1

= x12. x2+ x12. x2− (x1 + x2)2 + 1 = 1 – 2 − m2 + 1 = −m2 ≤ 0

Vậy MaxM = 0 khi m = 0

Đáp án cần chọn là: A

Câu 6: Trong mặt phẳng tọa độ Oxy cho Parabol (P): y = x2 và đường thẳng (d): 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải (m là tham số). Trong trường hợp (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ giao điểm là x1; x2. Đặt f (x) = x3 + (m + 1)x2 – x khi đó?

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Lời giải:

Xét phương trình hoành độ giao điểm của (d) và (P) ta có:

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Ta thấy phương trình (1) có hệ số a và c trái dấu nên luôn có hai nghiệm phân biệt mọi m nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Vì f(x) = x3 + (m + 1)x2 – x nên ta có:

f(x) −  f(x) = x13 – x23 + (m + 1)(x12 – x22) − x1 + x2

⇒ 2(f(x) −  f(x)) = 2x13 – 2x23 − 3(x1 + x2)(x12 – x22) − 2x1 + 2x2

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

= −x13 + x23 + 3x1.x2 (x2 – x1) – 2(x1 − x2) = −x13 + x23 + (x1 − x2) – 2(x1 − x2)

= −(x13 − x23 − 3x1.x2 (x1 – x2)) = [(x1 − x2)( x12 + x22 − 2 x1.x2)] = (x1 − x2)3

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Đáp án cần chọn là: D

Câu 7: Trong mặt phẳng Oxy cho đường thẳng 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải  và parabol 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải. Giả sử đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Tọa độ trung điểm M của đoạn thẳng AB luôn thỏa mãn phương trình nào dưới đây?

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Lời giải:

Xét phương trình hoành độ giao điểm của (d) và (P): 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

⇔ x2 – 2hx – 1 = 0 (*). Nhận thấy a = 1; c = −1 trái dấu nhau nên phương trình (*) luôn có hai nghiệm phân biệt hay đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A và B với mọi k

Gọi A(xA; yA); B(xB; yB) thì xA; xB là hai nghiệm của phương trình (*) và 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Đáp án cần chọn là: A

Câu 8: Trên parabol (P): y = x2 ta lấy ba điểm phân biệt A (a; a2); B (b; b2); C (c; c2) thỏa mãn a2 – b = b2 – c = c2 – a. Hãy tính tích T = (a + b + 1)(b + c + 1)(c + a + 1)

A. T = 2     

B. T = 1      

C. T = −1   

D. T = 0

Lời giải:

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Đáp án cần chọn là: C

Câu 9: Cho parabol 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải. Gọi A, B là các giao điểm của (P) và d. Tìm tọa độ điểm C trên trục tung cho CA + CB có giá trị nhỏ nhất.

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Lời giải:

Hoành độ của A và B là nghiệm của phương trình 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Dễ thấy hai điểm A, B cùng nằm về một phía so với trục tung (do cùng có hoành độ dương).

Lấy điểm A’ (− 4; 4) đối xứng với A qua trục tung

Khi đó CA + CB = CA’ + CB ≥ A’B, nên CA + CB đạt giá trị nhỏ nhất khi và chỉ khi A’, C, B thẳng hàng, tức là khi C là giao điểm của đường thẳng A’B với trục tung.

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Phương trình đường thẳng d’ đi qua A’ và B có dạng y = ax + b

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Suy ra giao điểm (d’) với trục tung có hoành độ 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Đáp án cần chọn là: B

Câu 10: Trong mặt phẳng Oxy, cho parabol (P): 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải và đường thẳng (d): x – 2y + 12 = 0. Gọi giao điểm của (d) và (P) là A, B. Tìm tọa độ điểm C nằm trên (P) sao cho tam giác ABC vuông tại C.

A. C(2; 1)  

B. C(1; 2)  

C. C(1; 0)      

D. C(0; 2)

Lời giải:

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Vậy 2 giao điểm A (6; 9), B (−4; 4)

Gọi 10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải là điểm cần tìm.

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Tam giác ABC vuông tại C khi và chỉ khi AB2 = AC2 + BC2

10 Bài tập Sự tương giao giữa đường thẳng và parabol nâng cao có lời giải

Vậy C (2; 1) là điểm thỏa mãn đề bài

Đáp án cần chọn là: A

Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:


Giải bài tập lớp 9 sách mới các môn học