15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải - Toán lớp 9

Tài liệu câu hỏi 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải Toán lớp 9 chọn lọc, có đáp án với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.

Câu 1: Phân tích đa thức f(x) = x4 – 2mx2 – x + m2 – m thành tích của hai tam thức bậc hai ẩn x.

A. f(x) = (m + x2 – x – 1)(m + x2 + x)

B. f(x) = (m − x2 – x – 2)(m − x2 + x)

C. f(x) = (m − x2 – x – 1)(m − x2 + x + 1)

D. f(x) = (m − x2 – x – 1)(m − x2 + x)

Lời giải:

Ta có: x4 – 2mx2 – x + m2 – m = 0 ⇔  m2 – (2x2 + 1)m + x4 – x = 0

Ta coi đây là phương trình bậc hai ẩn m và có:

m = (2x2 + 1)2 – 4(x4 – x) = 4x2 + 4x + 1 = (2x + 1)2 ≥ 0

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Do đó f(x) = (m − x2 – x – 1)(m − x2 + x)

Đáp án cần chọn là: D

Câu 2: Cho phương trình x2 – 4x = 2|x – 2| − m – 5, với m là tham số. Xác định m để phương trình có bốn nghiệm phân biệt

A. m < 1     

B. −1 < m < 0       

C. 0 < m < 1

D. m > 0

Lời giải:

Ta có: x2 – 4x = 2|x – 2| − m – 5 ⇔ (x2 – 4x + 4) – 2|x – 2| = −m – 1

⇔ (x – 2)2 – 2|x – 2| = −m – 1 (1)

Đặt t = |x −2| ≥ 0. Khi đó (1) thành: t2 – 2t + 1 + m = 0    (2)

Để (1) có 4 nghiệm phân biệt thì (2) có hai nghiệm phân biệt dương, tức là phải có:

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải thỏa mãn yêu cầu bài toán

Đáp án cần chọn là: C

Câu 3: Tìm m để phương trình 3x2 + 4(m – 1)x + m2 – 4m + 1 = 0 có hai nghiệm phân biệt x1; x2 thỏa mãn: 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

A. m = 1; m = 5    

B. m = 1; m = −1  

C. m = 5     

D. m ≠ 1

Lời giải:

Trước hết phương trình phải có hai nghiệm phân biệt x1; x2 khác 0 nên:

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Thay vào (*) ta thấy m = −1 không thỏa mãn

Vậy m = 1; m = 5 là giá trị cần tìm

Đáp án cần chọn là: A

Câu 4: Tìm các giá trị của m để phương trình x2 – mx + m2 – m – 3 = 0 có hai nghiệm x1; x2 là độ dài các cạnh góc vuông của tam giác ABC tại A biết độ dài cạnh huyền BC = 2

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Lời giải:

Vì độ dài cạnh của tam giác vuông là số dương nên x1; x2 > 0

Theo định lý Vi-ét ta có  15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Điều kiện để phương trình có nghiệm là:

∆ = m2 – 4(m2 – m – 3) ≥ 0 ⇔ 3m2– 4m – 12 ≤ 0  (2)

Từ giả thiết suy ra x12 + x22 = 4 ⇔ (x1 + x2)2 – 2x1.x2 = 4. Do đó

m2 – 2(m2 – m – 3) = 4 ⇔ m2 – 2m – 2 = 0 ⇔ m = 1    

Thay m = 1 ± √3  vào (1) và (2) ta thấy chỉ có m = 1 + √3 thỏa mãn.

Vậy giá trị cần tìm là m = 1 + √3

Đáp án cần chọn là: C

Câu 5: Cho phương trình x4 – mx3 + (m + 1)x2 – m(m + 1)x + (m + 1)2 = 0

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Lời giải:

Khi m = −2, ta có phương trình x4 + 2x3 − x2 – 2x + 1 = 0

Kiểm tra ta thấy x = 0 không là nghiệm của phương trình

Chia hai vế của phương trình cho x2+ ta được:

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Đặt 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải. Thay vào phương trình nêu trên ta được:

t2 + 2t – 1 = 0 ⇔ t = −1

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Đáp án cần chọn là: A

Câu 6: Có bao nhiêu giá trị của m để phương trình x2 – (2m + 1)x + m2 + 1 = 0 (1) có hai nghiệm phân biệt x1; x2 thỏa mãn (x1; x2)2 = x1

A. 2            

B. 3            

C. 4            

D. 1

Lời giải:

Để phương trình đã cho có 2 nghiệm phân biệt thì

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Vậy 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải thì phương trình có hai nghiệm phân biệt

Với 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải thì phương trình có hai nghiệm phân biệt x1; x2

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Vậy 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải thỏa mãn điều kiện bài toán

Đáp án cần chọn là: A

Câu 7: Cho phương trình x2 – (m – 1)x – m2 + m – 2 = 0, với m là tham số. Gọi hai nghiệm của phương trình đã cho là x1; x2. Tìm m để biểu thức 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải đạt giá trị lớn nhất

A. m = 4     

B. m = 3               

C. m = 2     

D. m = 1

Lời giải:

+) Xét 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải với mọi m ∈ R

Vậy phương trình luôn có hai nghiệm trái dấu với mọi m

+) Gọi hai nghiệm của phương trình đã cho là x1; x2

Vì phương trình luôn có hai nghiệm trái dấu nên x1x2 ≠ 0, do đó A được xác định với mọi x1; x2

Do x1; x2 trái dấu nên 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải, suy ra A < 0

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Khi đó 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải mang giá trị âm và A đạt giá trị lớn nhất khi –A có giá trị nhỏ nhất.

Ta có 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải (BĐT Cô-si), suy ra A ≤ −2. Đẳng thức xảy ra khi và chỉ khi 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Vậy với m = 1 thì biểu thức A đạt giá trị lớn nhất là −2

Đáp án cần chọn là: D

Câu 8: Cho phương trình 2x2 + 2mx + m2 – 2 = 0, với m là tham số. Gọi x1; x2 là hai nghiệm của phương trình. Tìm hệ thức liên hệ giữa x1; x2 không phụ thuộc vào m.

A. x1.x2 = x2 – x1 + 1                         

B. x1 − x2  = x2 – x1 – 1

C. x1.x2 = x2 – x1 + 1                         

D. x1.x2 = x1 + x2 − 1

Lời giải:

Ta có ∆ = m2 – 4(m – 1) = (m – 2)2 ≥ 0, với mọi m

Do đó phương trình luôn có nghiệm với mọi giá trị của m

Theo hệ thức Vi-ét, ta có x1 + x2 = m và x1.x2 = m – 1

Thay m = x1 + x2 vào x1.x2 = m – 1, ta được x1.x2 = x1 + x2 – 1

Vậy hệ thức liên hệ giữa x1; x2 không phụ thuộc vào m là x1.x2 = x1 + x2 – 1

Đáp án cần chọn là: D

Câu 9: Cho phương trình x2 – (2m + 1)x + 2m2 – 3m + 1 = 0, với m là tham số. Gọi x1; x2 là nghiệm của phương trình. Chọn câu đúng.

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Lời giải:

Ta có ∆' =(m – 1)2 – (2m2 – 3m + 1) = −m2 + m = m(1 – m). Để phương trình có hai nghiệm 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Đáp án cần chọn là: A

Câu 10: Cho phương trình x2 – (2m + 1)x + m2 + 1 = 0, với m là tham số. Tìm tất cả các giá trị của m ∈ Z để phương trình có hai nghiệm phân biệt x1; x2 sao cho biểu thức 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải có giá trị là số nguyên

A. m = 1     

B. m = 2     

C. m = −2   

D. m = 0

Lời giải:

Ta có ∆ = (2m + 1)2 – 4(m2 + 1) = 4m – 3. Để phương trình có hai nghiệm phân biệt 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải. Theo định lý Vi-ét ta có:

x1 + x2 = 2m + 1 và x1.x2 = m2 + 1.

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Để P ∈ Z thì ta phải có (2m + 1) là ước của 5, suy ra 2m + 1 = 5 ⇔ m = 2

Thử lại với m = 2, ta được P = 1 (thỏa mãn)

Vậy m = 2 là giá trị cần tìm thỏa mãn bài toán.

Đáp án cần chọn là: B

Câu 11: Cho phương trình x2 – 2(m + 1)x + m2 + 2, với m là tham số. Khi phương trình có hai nghiệm x1; x2 thì biểu thức P = x1 x2 – 2(x1 + x2) – 6 có giá trị nhỏ nhất là:

A. −10       

B. 0            

C. −11        

D. −12

Lời giải:

Ta có ∆' = (m + 1)2 – (m2 + 2) = 2m – 1

Để phương trình có hai nghiệm 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải. Theo định lý Vi-ét ta có:

x1 + x2 = 2m + 2 và x1.x2 = m2 + 2. Ta có:

P = x1.x2 – 2(x1 + x2) – 6 = m2 + 2 – 2(2m + 2) – 6 = m2 – 4m – 8

= (m – 2)2 – 12 ≥ −12

Dấu “=” xảy ra khi và chỉ khi m = 2 thỏa mãn điều kiện (*)

Vậy với m = 2 thì biểu thức P đạt giá trị nhỏ nhất −12

Đáp án cần chọn là: D

Câu 12: Gọi x1; x2 là hai nghiệm của phương trình 2x2 – (3a – 1)x – 2 = 0. Tìm giá trị nhỏ nhất của biểu thức: 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

A. 24          

B. 20          

C. 21          

D. 23

Lời giải:

Ta có ∆ =(3a – 1)2 + 16 > 0 ⇒ Phương trình luôn có hai nghiệm phân biệt.

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Vậy giá trị nhỏ nhất của P là 24

Đáp án cần chọn là: A

Câu 13: Giả sử phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm thuộc [0; 3]. Tìm giá trị lớn nhất của biểu thức: 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

A. 5            

B. 4            

C. 2            

D. 3

Lời giải:

Vì phương trình bậc hai có 2 nghiệm nên a ≠ 0. Biểu thức Q có dạng đẳng cấp bậc hai ta chia cả tử và mẫu của Q cho a2 thì  

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Gọi x1; x2 là hai nghiệm của phương trình, theo Vi-ét ta có 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Ta đánh giá (x1 + x2)2 qua x1x2 với điều kiện x1; x2 ∈ [0; 3]

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Vậy giá trị lớn nhất của Q là 3

Đáp án cần chọn là: D

Câu 14: Cho phương trình x2 – (m + 1)x – 3 = 0  (1), với x là ẩn, m là tham số. Gọi x1; x2 là hai nghiệm của phương trình (1). Đặt 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải. Tìm m khi B đạt giá trị lớn nhất.

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Lời giải:

Phương trình x2 – (m + 1)x – 3 = 0  (1)

+ Nhận xét ∆ = (m + 1)2 + 12 > 0, ∀ m ∈ R. Suy ra (1) luôn có hai nghiệm phân biệt x1; x2

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

+ Nếu B ≠ 3 thì (*) là phương trình bậc 2 ẩn m. Phương trình (*) có nghiệm m khi và chỉ khi ∆' ≥ 0

Hay (B – 5)2 – (B – 3)(3B – 20) ≥ 0 ⇔ 2B2 – 19B + 35 ≤ 0

⇔ (2B – 5)(B – 7) ≤ 0 15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

15 Bài tập Hệ thức Vi-ét và ứng dụng nâng cao có lời giải

Đáp án cần chọn là: A

Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:


Giải bài tập lớp 9 sách mới các môn học