Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp

Bài 1 trang 106 VTH Toán 9 Tập 2: Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.

Lời giải:

Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp

Lấy M là trung điểm của BC. Do BCE, BCF là các tam giác vuông có chung cạnh huyền BC nên ME = MB = MC = MF. Do đó đường tròn (M, MB) ngoại tiếp tứ giác BCEF.

Tương tự, CAFD và ABDE cũng là các tứ giác nội tiếp.

Lời giải vở thực hành Toán 9 Luyện tập chung trang 106 hay khác:

Xem thêm các bài giải vở thực hành Toán lớp 9 Kết nối tri thức hay, chi tiết khác:


Giải bài tập lớp 9 Kết nối tri thức khác