Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau tại G
Bài 6 trang 81 vở thực hành Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K lần lượt là trung điểm của GB, GC. Chứng minh tứ giác EDKI là hình bình hành.
Lời giải:
∆ABC có: E là trung điểm AB, D là trung điểm AC nên ED là đường trung bình của ∆ABC. Suy ra ED // BC và ED = BC. (1)
∆GBC có: I là trung điểm GC, K là trung điểm GB nên IK là đường trung bình của ∆GBC. Suy ra IK // BC và IK = BC. (2)
Từ (1) và (2) suy ra ED // IK và ED = IK nên tứ giác EDKI là hình bình hành.
Lời giải vở thực hành Toán 8 Bài tập cuối chương 4 hay khác:
Xem thêm các bài giải vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Giải bài tập lớp 8 Kết nối tri thức khác
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) - KNTT
- Giải sgk Toán 8 - KNTT
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT