Cho ABC là tam giác nhọn có M là trung điểm của BC, lấy N thuộc AB
Bài 6 trang 65 Vở thực hành Toán 7 Tập 2: Cho ABC là tam giác nhọn có M là trung điểm của BC, lấy N thuộc AB, P thuộc AC sao cho MP song song với AB và MN song song với AC. Chứng minh ba đường cao của tam giác MNP cũng là ba đường trung trực của tam giác MNP.
Lời giải:
Gọi H là giao điểm của hai đường cao xuất phát từ N và P.
Do NH vuông góc với PM và PM song song với AB nên NH vuông góc với AB.
Tương tự, do PH vuông góc với MN và MN song song với AC nên PH vuông góc với AC.
Trong tam giác ABC, NH và PH là hai đường cao giao nhau tại H nên H cũng là giao điểm của ba đường trung trực của tam giác MNP.
Xem thêm các bài giải Vở thực hành Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Giải bài tập lớp 7 Chân trời sáng tạo khác
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST