Những hằng đẳng thức đáng nhớ đầy đủ, chi tiết
Bài viết Những hằng đẳng thức đáng nhớ lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Những hằng đẳng thức đáng nhớ.
Bài giảng: Bài 3: Những hằng đẳng thức đáng nhớ - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
1. Bình phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.
b) Viết biểu thức x2 + 4x + 4 dưới dạng bình phương của một tổng.
Lời giải:
a) Ta có: ( a + 3 )2 = a2 + 2.a.3 + 32 = a2 + 6a + 9.
b) Ta có x2 + 4x + 4 = x2 + 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là các biểu thức tùy ý, ta có: ( A - B )2 = A2 - 2AB + B2.
Ví dụ:
a) Tính ( 5x -y )2
b) Viết biểu thức 4x2 - 4x + 1 dưới dạng bình phương của một hiệu
Lời giải:
a) Ta có ( 5x -y )2 = ( 5x )2 - 2.5x.y + ( y )2 = 25x2 - 10xy + y2.
b) Ta có 4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 1 = ( 2x - 1 )2.
3. Hiệu hai bình phương
Với A, B là các biểu thức tùy ý, ta có: A2 - B2 = ( A - B )( A + B ).
Ví dụ:
a) Tính ( x - 2 )( x + 2 ).
b) Tính 56.64
Lời giải:
a) Ta có: ( x - 2 )( x + 2 ) = ( x )2 - 22 = x2 - 4.
b) Ta có: 56.64 = ( 60 - 4 )( 60 + 4 ) = 602 - 42 = 3600 - 16 = 3584.
4. Lập phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
Ví dụ:
a) Tính ( x + 2 )3.
b) Viết biểu thức x3 + 3x2 + 3x + 1 dưới dạng lập phương của một tổng.
Lời giải:
a) Ta có ( x + 2 )3 = x3 + 3.x2.2 + 3x.22 + 23 = x3 + 6x2 + 12x + 8.
b) Ta có x3 + 3x2 + 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = ( x + 1 )3.
5. Lập phương của một hiệu.
Với A, B là các biểu thức tùy ý, ta có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3 - 6x2y + 12xy2 - 8y3 dưới dạng lập phương của một hiệu.
Lời giải:
a) Ta có: ( 2x - 1 )3 = ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13 = 8x3 - 12x2 + 6x - 1
b) Ta có : x3 - 6x2y + 12xy2 - 8y3 = ( x )3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = ( x - 2y )3
6. Tổng hai lập phương
Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = ( A + B )( A2 - AB + B2 ).
Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu của hiệu A - B.
Ví dụ:
a) Tính 33 + 43.
b) Viết biểu thức ( x + 1 )( x2 - x + 1 ) dưới dạng tổng hai lập phương.
Lời giải:
a) Ta có: 33 + 43 = ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2 - x + 1 ) = x3 + 13 = x3 + 1.
7. Hiệu hai lập phương
Với A, B là các biểu thức tùy ý, ta có: A3 - B3 = ( A - B )( A2 + AB + B2 ).
Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu của tổng A + B.
Ví dụ:
a) Tính 63 - 43.
b) Viết biểu thức ( x - 2y )( x2 + 2xy + 4y2 ) dưới dạng hiệu hai lập phương
Lời giải:
a) Ta có: 63 - 43 = ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.
b) Ta có : ( x - 2y )( x2 + 2xy + 4y2 ) = ( x )3 - ( 2y )3 = x3 - 8y3.
Bài 1: Tính giá trị của các biểu thức sau:
Lời giải:
a) Ta có:
(áp dụng hằng đẳng thức a2 - b2 = ( a + b )( a - b ) )
Vậy A = 25/47.
b) Ta có
(áp dụng hằng đẳng thức ( a + b )2 = a2 + 2ab + b2; ( a - b )2 = a2 - 2ab + b2 )
Vậy B = 1.
Bài 2: Tìm x biết
a) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
Lời giải:
a) Áp dụng các hằng đẳng thức ( a - b )( a2 + ab + b2 ) = a3 - b3.
( a - b )( a + b ) = a2 - b2.
Khi đó ta có ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0 ⇔ x = 27/4.
Vậy giá trị x cần tìm là x= 27/4 .
b) Áp dụng hằng đẳng thức ( a - b )3 = a3 - 3a2b + 3ab2 - b3
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi đó ta có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6 ⇔ x = - 1/2.
Vậy giá trị x cần tìm là x= - 1/2
Bài giảng: Bài 4: Những hằng đẳng thức đáng nhớ (tiếp) - Cô Vương Thị Hạnh (Giáo viên VietJack)
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Bài tập Những hằng đẳng thức đáng nhớ
- Lý thuyết Những hằng đẳng thức đáng nhớ
- Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
- Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều