Lý thuyết Liên hệ giữa thứ tự và phép cộng lớp 8 (hay, chi tiết)

Bài viết Lý thuyết Liên hệ giữa thứ tự và phép cộng lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Liên hệ giữa thứ tự và phép cộng.

Bài giảng: Bài 1: Liên hệ giữa thứ tự và phép cộng - Cô Vương Thị Hạnh (Giáo viên VietJack)

1. Nhắc lại về thứ tự trên tập hợp số

Trên tập hợp số thực, khi so sánh hai số a và b, xảy ra một trong ba trường hợp sau:

+ Số a bằng số b, kí hiệu là a = b.

+ Số a nhỏ hơn số b, kí hiệu là a < b.

+ Số a lớn hơn số b, kí hiệu là a > b.

+ Số a không nhỏ hơn số b, kí hiệu a ≥ b.

+ Số a không lớn hơn số b, kí hiệu a ≤ b.

2. Bất đẳng thức

Hệ thức dạng a < b (hay dạng a > b; a ≥ b; a ≤ b ) được gọi là bất đẳng thức a gọi là vế trái, b gọi là vế phải của bất đẳng thức.

Ví dụ:

Bất đẳng thức 7 + ( - 3 ) > 3 có vế trái là 7 + ( - 3 ), vế phải là 3.

Bất đẳng thức x2 + 1 ≥ 1 có vế trái là x2 + 1, vế phải là 1.

3. Liên hệ giữa thứ tự và phép cộng

Tính chất: Cho ba số a,b và c, ta có

Nếu a < b thì a + c < b + c.

Nếu a ≤ b thì a + c ≤ b + c.

Nếu a > b thì a + c > b + c.

Nếu a ≥ b thì a + c ≥ b + c.

Chú ý: Tính chất của thứ tự cũng chính là tính chất của bất đẳng thức

Ví dụ:

Ta có √ 2 < 3 ⇒ √ 2 + 2 < 3 + 2

Ta có - 2000 > - 2001 ⇒ - 2000 + ( - 111 ) > - 2001 + ( - 111 ).

Bài 1: Khẳng định sau đây đúng hay sai? Vì sao?

a) - 6 > 5 - 10

b) - 4 + 2 ≥ 5 - 7

c) 11 + ( - 6 ) ≤ 10 + ( - 6 )

Lời giải:

a) Ta có: VP = 5 - 10 = - 5

Mà - 5 > - 6 ⇒ VP > VT.

Vậy khẳng định trên là sai.

b) Ta có:Bài tập Liên hệ giữa thứ tự và phép cộng | Lý thuyết và Bài tập Toán 8 có đáp án

Khẳng định trên đúng.

c) Ta có:Bài tập Liên hệ giữa thứ tự và phép cộng | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ VT = 11 + ( - 6 ) > VP = 10 + ( - 6 )

Khẳng định trên là sai.

Bài 2: So sánh a và b biết:

a) a - 15 > b - 15

b) a + 2 ≤ b + 2

Lời giải:

a) Ta có: a - 15 > b - 15 ⇔ a - 15 + 15 > b - 15 + 15 ⇔ a > b

Vậy a > b

b) Ta có: a + 2 ≤ b + 2 ⇒ a + 2 + ( - 2 ) ≤ b + 2 + ( - 2 ) ⇔ a ≤ b

Vậy a ≤ b

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Giải bài tập lớp 8 sách mới các môn học