Các dạng bài tập nâng cao về số nguyên tố lớp 6 (hay, có lời giải)
Bài viết Các dạng bài tập nâng cao về số nguyên tố lớp 6 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập nâng cao về số nguyên tố.
Phương pháp: Cách tìm chữ số tận cùng
• Các chữ số cuối cùng của 1n là 1.
• Các chữ số cuối cùng của 5n là 5 với n>0
• Các chữ số cuối cùng của 2n được lặp lại theo chu kì 4k + 1, với k là số tự nhiên và 1 = 0,3 , tức là:
+ n=4,8,…,4k+0 có chung chữ số cuối cùng là 6;
+ n=1,5,9,…,4k+1 có chung chữ số cuối cùng là 2;
+ n=2,6,10,…,4k+2 có chung chữ số cuối cùng là 4;
+ n=3,7,11,…,4k+3 có chung chữ số cuối cùng là 8;
• Các chữ số cuối cùng của 3n được lặp lại theo chu kì 4k+1, với k là số tự nhiên và 1= 0,3 , tức là:
+ n=0,4,8,…,4k+0 có chung chữ số cuối cùng là 1;
+ n=1,5,9,…,4k+1 có chung chữ số cuối cùng là 3;
+ n=2,6,10,…,4k+2 có chung chữ số cuối cùng là 9;
+ n=3,7,11,…,4k+3 có chung chữ số cuối cùng là 7;
• Các chữ số cuối cùng của 7n được lặp lại theo chu kì 4k+1, với k là số tự nhiên và 1= 0,3 , tức là:
+ n=0,4,8,…,4k+0 có chung chữ số cuối cùng là 1;
+ n=1,5,9,…,4k+1 có chung chữ số cuối cùng là 7;
+ n=2,6,10,…,4k+2 có chung chữ số cuối cùng là 9;
+ n=3,7,11,…,4k+3 có chung chữ số cuối cùng là 3;
• các số có chữ số tận cùng là 0,1,5,6 khi nâng lên lũy thừa bậc bất kì thì được chữ số tận cùng vẫn không thay đổi
• các số có chữ số tận cùng là 4,9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi
• các số có chữ số tận cùng là 3,7,9 khi nâng lên lùy thừa bận 4n (n là số tự nhiên) thì chữ số tận cùng là 1
• các số có chữ số tận cùng là 2,4,8 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì chữ số tận cùng là 6
Ví dụ 1: Chứng minh rằng các số sau đây là hợp số:
a) 27+311+513+717+1119
b) 1+2123+23124+25125
Lời giải:
a) Ta có: 27+311+513+717+1119
Theo quy ước ta có:
27 có chữ số tận cùng là 8
311 có chữ số tận cùng là 7
513 luôn có chữ số tận cùng là 5
717 có chữ số tận cùng là 7
1119 luôn có chữ số tận cùng là 1
Ta có: 27+311+513+717+1119 có chữ số tận cùng là 8
Suy ra 27+311+513+717+1119 chia hết cho 2.
Vậy, đây là hợp số.
b) Ta có :1+2123+23124+25125
2123 có chữ số tận cùng là 1
23124 có chữ số tận cùng là 1 ( các số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì có chữ số tận cùng là 1. Số đã cho có số mũ là 124 = 4.31)
25125 luôn có chữ số tận cùng là 5
Nên 1+2123+23124+25125 có chữ số tận cùng là 8
suy ra 1+2123+23124+25125 chia hết cho 2.
vậy, đây là hợp số.
Ví dụ 2: Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6
Lời giải:
Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.
• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)
• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:
+ Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3
+ Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3
+ Nếu a và a + 2k có cùng số dư, thì suy ra:
( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3
Vậy, ta luôn có k chia hết cho 3 (2)
Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.
Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:
• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.
• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.
Ví dụ 3: Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố đó là số chẵn hay lẻ?
Lời giải:
Ta thấy trong 25 số nguyên tố có 1 số chẵn còn lại là 24 số lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Ví dụ 4: Tổng của ba số nguyên tố bằng 1012. Tìm số nhỏ nhất trong ba số nguyên tố đó.
Lời giải:
Vì tổng của 3 số nguyên tố bằng 1012, nên trong 3 số nguyên tố đó tồn tại một số nguyên tố chẵn. Mà số nguyên tố chẵn duy nhất là 2 và là số nguyên tố nhỏ nhất. Vậy số nguyên tố nhỏ nhất trong 3 số nguyên tố đó là 2
Câu 1: Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.
Lời giải:
Tổng của 4 số nguyên tố là một số nguyên tố ⇒ tổng của 4 số nguyên tố là 1 số lẻ ⇒ trong 4 số đó tồn tại ít nhất một số nguyên tố chẵn. Mà số nguyên tố chẵn duy nhất là 2. Vậy 4 số nguyên tố cần tìm là: 2; 3; 5; 7
Câu 2: Tổng của hai số nguyên tố có thể bằng 2003 được không?
Lời giải:
Vì tổng của 2 số nguyên tố bằng 2003, nên trong 2 số nguyên tố đó tồn tại 1 số nguyên tố chẵn. Mà số nguyên tố chẵn duy nhất là 2. Do đó số nguyên tố còn lại là 2001. Do 2001 chia hết cho 3 và 2001 > 3. Suy ra 2001 không phải là số nguyên tố. ⇒ Tổng của hai số nguyên tố không thể bằng 2003 .
Câu 3: Tìm hai số nguyên tố, sao cho tổng và hiệu của chúng đều là số nguyên tố.
Lời giải:
Gọi a, b, c, d là các số nguyên tố. (a>b)
Từ (*) ⇒ a > 2, a là số nguyên tố lẻ ⇒ c + b và d – b là số lẻ. Do b, c, d đều là số nguyên tố nên để c + b và d – b là số lẻ thì ⇒ b chẵn. Vậy b = 2
a. Bài toán đưa về dạng tìm một số nguyên tố a sao cho a – 2 và a + 2 cũng là số nguyên tố.
- Nếu a = 5 ⇒ a – 2 = 3; a + 2 = 7 đều là số nguyên tố
- Nếu a ≠ 5 . Xét 2 trường hợp
+ a chia 3 dư 1 ⇒ a + 2 chia hết cho 3 : không là số nguyên tố
+ a chia 3 dư 2 ⇒ a – 2 chia hết cho 3: không là số nguyên tố
Vậy chỉ có số nguyên tố a duy nhất thoả mãn là 5.
Hai số nguyên tố cần tìm là 5; 2
Câu 4: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được một số là lập phương của một số tự nhiên.
Lời giải:
Gọi số tự nhiên đó là a.
Ta có 103 = 1000; 53 = 125 ⇒ 125 ≤ a 3 < 1000 ⇒ 5 ≤ a < 10
Ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
a3 | 125 | 216 | 343 | 512 | 729 |
Số cần tìm | 521 | 612 | 343 | 215 | 927 |
Kết luận | TM | loại | loại | loại | loại |
Vậy số cần tìm là 521
Câu 5: Cho p là số nguyên tố lớn hơn 3. Biết p + 2 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Lời giải:
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 6k-1 hoặc 6k+1nếu p=6k+1 thì p+2=6k+3=3(2k+1)chia hết cho 3 và lớn hơn 3 nên là hợp số(vô lí) do đó p=6k-1⇒p+1=6k chia hết cho 6(đpcm)
Câu 6: Một số nguyên tố p chia cho 42 có số dư r là hợp số. Tìm số dư r.
Lời giải:
Ta có:
p = 42.k + r. = 2.3.7.k + r
Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y
x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố.
Vậy x và y có thể là các số trong các số {5,11,13, ..}
Nếu x=5 và y=11 thì r = x.y =55 > 42
Vậy chỉ còn trường hợp x = 5, y = 5. Khi đó r = 25
Câu 7: Hai số nguyên tố sinh đôi là hai số nguyên tố hơn kém nhau 2 đơn vị. Tìm hai số nguyên tố sinh đôi nhỏ hơn 50.
Lời giải:
Các số nguyên tố sinh đôi nhỏ hơn 50 là:3 và 5; 5 và 7; 11 và 13; 17 và 19; 29 và 31; 41 và 43.
Câu 8: Tìm số nguyên tố, biết rằng số đó bằng tổng của hai chữ số nguyên tố và bằng hiệu của hai số nguyên tố.
Lời giải:
Giả sử a, b, c, d, e là các số nguyên tố (d > e)
Theo bài ra ta có: a = b + c = d – e (*)
Từ (*) ⇒ a > 2 ⇒ a là số nguyên tố lẻ
+ b + c = d – e là số lẻ.do b, d là các số nguyên tố ⇒ b, d là số lẻ ⇒ c, e là số chẵn.
+ c = e = 2 (do e, c là các số nguyên tố)
+ a = b + 2 = d – 2 ⇒ d = b + 4,vậy ta cần tìm số nguyên tố b sao cho b + 2, b + 4 cũng là số nguyên tố
+ b = 3
Vậy số nguyên tố cần tìm là 5
Xem thêm các dạng bài tập Toán lớp 6 chọn lọc, có đáp án chi tiết hay khác:
Dạng bài tập về Tính chất chia hết của một tổng cực hay, có lời giải
Dạng bài tập về Dấu hiệu chia hết cho 2, 3, 4, 5, 6, 9, 10, 11 cực hay
Cách Phân tích một số ra thừa số nguyên tố cực hay, có lời giải
Xem thêm các loạt bài Để học tốt Toán lớp 6 hay khác:
- Giải sgk Tiếng Anh 6 Global Success
- Giải sgk Tiếng Anh 6 Friends plus
- Giải sgk Tiếng Anh 6 Smart World
- Giải sgk Tiếng Anh 6 Explore English
- Lớp 6 - Kết nối tri thức
- Soạn Văn 6 (hay nhất) - KNTT
- Soạn Văn 6 (ngắn nhất) - KNTT
- Giải sgk Toán 6 - KNTT
- Giải sgk Khoa học tự nhiên 6 - KNTT
- Giải sgk Lịch Sử 6 - KNTT
- Giải sgk Địa Lí 6 - KNTT
- Giải sgk Giáo dục công dân 6 - KNTT
- Giải sgk Hoạt động trải nghiệm 6 - KNTT
- Giải sgk Tin học 6 - KNTT
- Giải sgk Công nghệ 6 - KNTT
- Giải sgk Âm nhạc 6 - KNTT
- Lớp 6 - Chân trời sáng tạo
- Soạn Văn 6 (hay nhất) - CTST
- Soạn Văn 6 (ngắn nhất) - CTST
- Giải sgk Toán 6 - CTST
- Giải sgk Khoa học tự nhiên 6 - CTST
- Giải sgk Lịch Sử 6 - CTST
- Giải sgk Địa Lí 6 - CTST
- Giải sgk Giáo dục công dân 6 - CTST
- Giải sgk Công nghệ 6 - CTST
- Giải sgk Hoạt động trải nghiệm 6 - CTST
- Giải sgk Âm nhạc 6 - CTST
- Lớp 6 - Cánh diều
- Soạn Văn 6 Cánh diều (hay nhất)
- Soạn Văn 6 Cánh diều (ngắn nhất)
- Giải sgk Toán 6 - Cánh diều
- Giải sgk Khoa học tự nhiên 6 - Cánh diều
- Giải sgk Lịch Sử 6 - Cánh diều
- Giải sgk Địa Lí 6 - Cánh diều
- Giải sgk Giáo dục công dân 6 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 6 - Cánh diều
- Giải sgk Tin học 6 - Cánh diều
- Giải sgk Công nghệ 6 - Cánh diều
- Giải sgk Âm nhạc 6 - Cánh diều