Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lớp 12 (hay, chi tiết)
Bài giảng: Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số - Thầy Trần Thế Mạnh (Giáo viên VietJack)
Định nghĩa:
Cho hàm số y = f(x) xác định trên miền D
- Số M gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu: .
Kí hiệu: hoặc .
- Số m gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu: .
Kí hiệu: hoặc
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số liên tục trên K (K có thể là khoảng, đoạn, nửa khoảng, ...)
1. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sử dụng bảng biến thiên
- Bước 1. Tính đạo hàm f'(x).
- Bước 2. Tìm các nghiệm của f'(x) và các điểm f'(x) trên K.
- Bước 3. Lập bảng biến thiên của f(x) trên K.
- Bước 4. Căn cứ vào bảng biến thiên kết luận
2. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số không sử dụng bảng biến thiên
** Trường hợp 1. Tập K là đoạn [a; b]
- Bước 1. Tính đạo hàm f'(x) .
- Bước 2. Tìm tất cả các nghiệm xi ∈ [a; b] của phương trình f'(x) = 0 và tất cả các điểm α ∈ [a; b] làm cho f'(x) không xác định.
- Bước 3. Tính f(a), f(b), f(xi), f(αi).
- Bước 4. So sánh các giá trị tính được và kết luận .
** Trường hợp 2. Tập K là khoảng (a; b)
- Bước 1. Tính đạo hàm f'(x) .
- Bước 2. Tìm tất cả các nghiệm xi ∈ (a; b) của phương trình f'(x) = 0 và tất cả các điểm αi ∈ (a; b) làm cho f'(x) không xác định.
- Bước 3. Tính .
- Bước 4. So sánh các giá trị tính được và kết luận .
** Chú ý: Nếu giá trị lớn nhất (nhỏ nhất) là A hoặc B thì ta kết luận không có giá trị lớn nhất (nhỏ nhất).
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Lý thuyết Sự đồng biến, nghịch biến của hàm số
- Lý thuyết Cực trị hàm số
- Lý thuyết Đường tiệm cận
- Lý thuyết Khảo sát sự biến thiên và vẽ đồ thị hàm số
- Lý thuyết tổng hợp chương Ứng dụng đạo hàm để khảo sát hàm số
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều