Bài tập tổng hợp về hàm số bậc hai (chọn lọc, có lời giải)

Bài viết Bài tập tổng hợp về hàm số bậc hai với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập tổng hợp về hàm số bậc hai.

Bài 1: Xác định phương trình của Parabol (P): y = x2 + bx + c (P) trong các trường hợp sau:

a) (P) đi qua điểm A(1;0) và B (-2; -6)

b) (P) có đỉnh I(1; 4)

c) (P) cắt trục tung tại điểm có tung độ bằng 3 và có đỉnh S(-2; -1).

Bài 2: Lập bảng biến thiên và vẽ đồ thị các hàm số sau

a) y = x2 - 3x + 2

b) y = -2x2 + 4x

Bài 3: Cho hàm số y = -x2 - 2x + 2

a) Lập bảng biến thiên và vẽ đồ thị các hàm số trên

b) Tìm m để đồ thị hàm số trên cắt đường thẳng y = m tại hai điểm phân biệt

c) Sử dụng đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị âm

d) Sử dụng đồ thị, hãy tìm giá trị lớn nhất, nhỏ nhất của hàm số đã cho trên [-3; 1]

Bài 4: Vẽ đồ thị của hàm số sau:

a) y = -x2 - 2|x| + 3

b)Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 5: Tìm giá trị lớn nhất và nhỏ nhất của hàm số y = x4 - 4x2 - 1 trên [-1; 2]

Bài 6: Cho các số x, y thoả mãn: x2 + y2 = 1 + xy. Chứng minh rằng

            1/9 ≤ x4 + y4 - x2y2 ≤ 3/2

Bài 1:

a) Vì (P) đi qua A, B nên

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy (P): y = x2 + 3x - 4 .

b) Vì (P) có đỉnh I(1; 4) nên:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy (P): y = x2 - 2x + 5.

c) (P) cắt Oy tại điểm có tung độ bằng 3 suy ra c = 3

(P) có đỉnh S (-2; -1) suy ra:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy (P): y = x2 + 4x + 3.

Bài 2.

a) Ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bảng biến thiên

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra đồ thị hàm số y = x2 - 3x + 2 có đỉnh là I(3/2; -1/4), đi qua các điểm A(2; 0); B (1; 0), C(0; 2).

Đồ thị hàm số nhận đường thẳng x = 3/2 làm trục đối xứng và hướng bề lõm lên trên.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bảng biến thiên

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra đồ thị hàm số y = -2x2 + 4x có đỉnh là I(1; 2), đi qua các điểm O(0; 0), B (2; 0).

Đồ thị hàm số nhận đường thẳng x = 1 làm trục đối xứng và hướng bề lõm xuống dưới.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 3:

a) Ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bảng biến thiên

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra đồ thị hàm số y = -x2 - 2x + 3 có đỉnh là I(-1; 4), đi qua các điểm A(1; 0), B (-3; 0).

Đồ thị hàm số nhận đường thẳng x = -1 làm trục đối xứng và hướng bề lõm xuống dưới.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) Đường thẳng y = m song song hoặc trùng với trục hoành do đó dựa vào đồ thị ta có

Với m < 4 đường thẳng y = m và parabol y = -x2 - 2x + 3 cắt nhau tại hai điểm phân biệt.

c) Hàm số nhận giá trị dương ứng với phần đồ thị nằm hoàn toàn trên trục hoành

Do đó hàm số chỉ nhận giá trị âm khi và chỉ khi x ∈ (-∞; -2) ∪ (1; +∞).

d) Dựa vào bảng biến thiên, ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 4: a) y = -x2 - 2|x| + 3

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

a) Vẽ đồ thị hàm số (P): y = -x2 - 2x + 3 có đỉnh I (-1; - 4), trục đối xứng x = -1, đi qua các điểm A(1; 0), B (-3; 0). Bề lõm hướng xuống dưới.

Khi đó (P1 ) là đồ thị hàm số y = -x2 - 2|x| + 3 là gồm phần bên phải trục tung của (P) và phần lấy đối xứng của nó qua trục tung.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) Gọi (P2 ) là phần đồ thị của (P) nằm trên trục hoành và lấy đối xứng của phần nằm dưới trục hoành qua trục Ox.

Vậy đồ thị hàm số

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

gồm phần bên đồ thị bên phải đường thẳng x = 1 của (P2 ) và phần đồ thị bên trái đường thẳng x = 1 của (P1 ).

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 5:

Đặt t = x2. Với x ∈ [-1; 2] ta có t ∈ [0; 4]

Hàm số trở thành f(t) = t2 - 4t - 1 với t ∈ [0; 4].

Bảng biến thiên

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra :

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 6:

Đặt P = x4 + y4 - x2y2

Ta có P = (x2 + y2)2 - 3x2y2 = (1+xy)2 - 3x2y2 = -2x2y2 + 2xy + 1

Đặt t = xy, khi đó P = -2t2 + 2t + 1

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Xét hàm số f(t) = -2t2 + 2t + 1 trên [(-1)/3; 1]

Ta có bảng biến thiên

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Từ bảng biến thiên ta có :

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra điều phải chứng minh.

Lời giải bài tập lớp 10 sách mới:

ham-so-bac-nhat-va-bac-hai.jsp

Giải bài tập lớp 10 sách mới các môn học