Giải Toán 9 trang 102 Tập 1 Chân trời sáng tạo

Với Giải Toán 9 trang 102 Tập 1 trong Bài 4: Hình quạt tròn và hình vành khuyên Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 102.

Bài 1 trang 102 Toán 9 Tập 1: Tính độ dài các cung 30°; 90°; 120° của đường tròn (O; 6 cm).

Lời giải:

Xét đường tròn (O; 6 cm):

⦁ Cung 30°, bán kính 6 cm có độ dài là:

l=πRn180=π630180=π3,14 (cm).

⦁ Cung 90°, bán kính 6 cm có độ dài là:

l=πRn180=π690180=3π9,42 (cm).

⦁ Cung 120°, bán kính 6 cm có độ dài là:

l=πRn180=π6120180=4π12,57 (cm).

Bài 2 trang 102 Toán 9 Tập 1: Tính diện tích các hình quạt tròn ứng với cung có số đo lần lượt là 30°; 90°; 120° của hình tròn (O; 12 cm).

Lời giải:

Xét hình tròn (O; 12 cm):

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 30° có diện tích là:

S=πR2n360=π12230360=12π37,70 (cm2).

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 90° có diện tích là:

S=πR2n360=π12290360=36π113,10 (cm2).

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 120° có diện tích là:

S=πR2n360=π122120360=48π150,80 (cm2).

Bài 3 trang 102 Toán 9 Tập 1: Tính diện tích các hình quạt tròn ứng với cung có độ dài lần lượt là 8 cm, 15 cm của hình tròn (O; 5 cm).

Lời giải:

Diện tích của hình quạt tròn bán kính R (cm), ứng với cung n° là:

S=πR2n360=πRn180R2=lR2 (cm2).

Xét hình tròn (O; 5 cm):

⦁ Nếu cung có độ dài 8 cm thì diện tích hình quạt tròn tương ứng là:

S=lR2=852=20 (cm2).

⦁ Nếu cung có độ dài 15 cm thì diện tích hình quạt tròn tương ứng là:

S=lR2=1552=37,5 (cm2).

Bài 4 trang 102 Toán 9 Tập 1: Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 9 cm) và (O; 12 cm).

Lời giải:

Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 9 cm) và (O; 12 cm) là:

S = π(R2 – r2) = π(122 – 92) = 63π ≈ 197,92 (cm2).

Bài 5 trang 102 Toán 9 Tập 1: Tính diện tích hình viên phân giới hạn bởi dây cung có độ dài là 55 cm và cung có số đo là 95° (Hình 12).

Bài 5 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Gọi các điểm như hình vẽ. Kẻ OH ⊥ AB.

Bài 5 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Xét ∆OAB có OA = OB nên ∆OAB cân tại O. Do đó đường cao OH đồng thời là đường phân giác và đường trung tuyến của tam giác.

Khi đó AOH^=12AOB^=1295°=47,5° và H là trung điểm của AB hay AH=AB2=552=27,5 (cm).

Xét ∆OAH vuông tại H, ta có:

AH=OAcosAOH^. Suy ra OA=AHcosAOH^=27,5cos47,5°40,71 (cm).

OH=AHcotAOH^=27,5cot47,525,20 (cm).

Diện tích tam giác OAB là: S1=12OHAB1225,2055=693 (cm2).

Diện tích hình quạt tròn OAB là:

S2=πOA2n360π40,712953601 373,96 (cm2).

Diện tích hình viên phân cần tìm là:

S=S2S11 373,96693=680,96 (cm2).

Bài 6 trang 102 Toán 9 Tập 1: Một máy kéo nông nghiệp có đường kính bánh xe sau là 124 cm và đường kính bánh xe trước là 80 cm. Hỏi khi bánh xe sau lăn được 20 vòng thì bánh xe trước lăn được bao nhiêu vòng?

Bài 6 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Chu vi của bánh xe sau là: 2πR = dπ = 124π (cm).

Quãng đường mà bánh xe sau lăn được 20 vòng là: 124π.20 = 2 480π (cm).

Chu vi của bánh xe trước là: 2πR’ = d’π = 80π (cm).

Khi đó, số vòng mà bánh xe trước lăn được là: 2 480π80π=31 (vòng).

Bài 7 trang 102 Toán 9 Tập 1: Thành phố Đà Lạt nằm vào khoảng 11°58’ vĩ độ Bắc. Mỗi vòng kinh tuyến của Trái Đất dài khoảng 40 000 km. Hãy tính độ dài cung kinh tuyến từ Đà Lạt đến xích đạo.

(Nguồn: https://vi.wikipedia.org/wiki/Đà-Lạt.)

Bài 7 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Mỗi vòng kinh tuyến của Trái Đất dài khoảng 40 000 km nên bán kính của Trái Đất là khoảng: R=40 0002π=20 000π (km).

Thành phố Đà Lạt nằm vào khoảng 11°58’ vĩ độ Bắc nên cung kinh tuyến từ Đà Lạt đến xích đạo có số đo là 11°58'=115860°.

Vậy độ dài cung kinh tuyến từ Đà Lạt đến xích đạo là:

l=πRn180=π20 000π115860180=35 900271 329,63 (km).

Lời giải bài tập Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác