Bài 8 trang 87 Toán 9 Tập 1 Cánh diều

Bài 8 trang 87 Toán 9 Tập 1: Từ vị trí A ở phía trên một tòa nhà có chiều cao AD = 68 m, bác Duy nhìn thấy vị trí C cao nhất của một tháp truyền hình, góc tạo bởi tia AC và tia AH theo phương nằm ngang là CAH^=43°. Bác Duy cũng nhìn thấy chân tháp tại vị trí B mà góc tạo bởi tia AB và tia AH là BAH^=28°, điểm H thuộc đoạn thẳng BC (Hình 27). Tính khoảng cách BD từ chân tháp đến chân tòa nhà và chiều cao BC của tháp truyền hình (làm tròn kết quả đến hàng phần mười của mét).

Bài 8 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Vì AH ⊥ BC và BD ⊥ BC nên AH // BD. Do đó ABD^=BAH^=28° (so le trong).

Khoảng cách BD từ chân tháp đến chân tòa nhà là:

BD = AD.cotABD^ = 68.cot28o ≈ 127,9 (m).

Do tứ giác ADBH có ADB^=AHB^=DBH^=90° nên ADBH là hình chữ nhật.

Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).

Do ∆AHC vuông tại H, ta có CH = AH.tanCAH^ ≈ 127,9.tan43o ≈ 119,3 (m).

Chiều cao BC của tháp truyền hình là:

BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).

Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác