Bài 2 trang 86 Toán 9 Tập 1 Cánh diều

Bài 2 trang 86 Toán 9 Tập 1: Cho tam giác ABC có đường cao AH = 6 cm, B^=40°, C^=35°. Tính độ dài các đoạn thẳng AB, BH, AC, BC (làm tròn kết quả đến hàng phần mười của centimét).

Lời giải:

Bài 2 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABH vuông tại H, ta có:

⦁ sinB = AHAB, suy ra AB = AHsin40o = 6sin40°9,3 (cm).

⦁ BH = AH.cotB = 6.cot40° ≈ 7,2 (cm).

Xét ∆ACH vuông tại H, ta có:

⦁ sinC = AHAC suy ra AC = AHsin35°=6sin35°10,5 (cm).

⦁ CH = AH.cotC = 6.cot35° ≈ 8,6 (cm).

Khi đó, BC = BH + HC ≈ 7,2 + 8,6 = 15,8 (cm).

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác