Bài 5 trang 66 Toán 9 Tập 1 Cánh diều

Bài 5 trang 66 Toán 9 Tập 1: Có hai xã cùng ở một bên bờ sông. Người ta đo được khoảng cách từ trung tâm A, B của hai xã đó đến bờ sông lần lượt là AA’ = 500 m, BB’ = 600 m và khoảng cách A’B’ = 2 200 m (minh họa ở Hình 6). Các kĩ sư muốn xây một trạm cung cấp nước sạch nằm bên bờ sông cho người dân hai xã. Giả sử vị trí của trạm cung cấp nước sạch đó là điểm M trên đoạn A’B’ với MA’ = x (m), 0 < x < 2 200.

Bài 5 trang 66 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Viết công thức tính tổng khoảng cách MA + MB theo x.

b) Tính tổng khoảng cách MA + MB khi x = 1 200 (làm tròn kết quả đến hàng đơn vị của mét).

Lời giải:

a) Áp dụng định lí Pythagore cho ∆AA’M vuông tại A’ ta có:

MA2 = AA’2 + A’M2 = 5002 + x2 = 250 000 + x2

Suy ra MA = 250000+x2 (m).

Ta có A’B’ = A’M + B’M, suy ra B’M = A’B’ – A’M = 2 200 – x (m).

Áp dụng định lí Pythagore cho ∆BB’M vuông tại B’ ta có:

MB2 = BB’2 + B’M2 = 6002 + (2 200 – x)2 = 360 000 + (2 200 – x)2

Suy ra MB = 360 000+2 200x2 (m).

Khi đó, tổng khoảng cách MA + MB theo x là:

MA + MB = 250 000+x2+360 000+2 200x2 (m).

b) Khi x = 1 200, ta có tổng khoảng cách MA + MB là:

MA + MB = 250 000+1 2002+360 000+2 2001 2002

=1 690 000+360 000+1 0002

=1 300+1 360 0002 466 m.

Vậy tổng khoảng cách MA + MB khoảng 2 466 m khi x = 1 200.

Lời giải bài tập Toán 9 Bài 3: Căn thức bậc hai và căn thức bậc ba của biểu thức đại số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác