Bài 4 trang 124 Toán 9 Tập 1 Cánh diều
Bài 4 trang 124 Toán 9 Tập 1: Chứng minh trong một đường tròn:
a) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy;
b) Đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy;
c) Hai dây bằng nhau thì cách đều tâm;
d) Hai dây cách đều tâm thì bằng nhau.
Lời giải:
a)
Gọi (O) là đường tròn có đường kính vuông góc với dây AB tại H.
Xét ∆OAB có OA = OB = R nên ∆OAB cân tại O.
∆OAB cân tại O có OH là đường cao (do OH ⊥ AB) nên đồng thời là đường trung tuyến của tam giác. Do đó H là trung điểm của AB.
Vậy đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
b)
Gọi (O) là đường tròn có đường kính đi qua trung điểm H của dây AB.
Xét ∆OAB có OA = OB = R nên ∆OAB cân tại O.
∆OAB cân tại O có OH là đường trung tuyến nên đồng thời là đường cao của tam giác. Do đó OH ⊥ AB tại H.
Vậy đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
c)
Gọi (O) là đường tròn có hai dây AB, CD. Gọi OH, OK lần lượt là khoảng cách từ O đến AB, CD. Khi đó OH ⊥ AB tại H và OK ⊥ CD tại K.
Do đó, theo kết quả của câu a, ta có: H, K lần lượt là trung điểm của AB, CD.
Suy ra HB = AB và KD = CD.
Mà AB = CD nên HB = KD. (1)
Xét ∆OHB vuông tại H, ta có: OB2 = OH2 + HB2 (định lí Pythagore).
Suy ra OH2 = OB2 – HB2 = R2 – HB2. (2)
Xét ∆OKD vuông tại H, ta có: OD2 = OK2 + KD2 (định lí Pythagore).
Suy ra OK2 = OD2 – KD2 = R2 – KD2. (3)
Từ (1), (2) và (3) suy ra OH2 = OK2, hay OH = OK.
Vậyhai dây bằng nhau thì cách đều tâm.
d)
Gọi (O) là đường tròn có hai dây AB, CD bằng nhau. Gọi OH, OK lần lượt là khoảng cách từ O đến AB, CD. Khi đó OH ⊥ AB tại H, OK ⊥ CD tại K.
Do đó, theo kết quả của câu a, ta có: H, K lần lượt là trung điểm của AB, CD.
Suy ra AB = 2HB và CD = 2KD.
Theo bài, OH = OK, suy ra OH2 = OK2. (1)
Xét ∆OHB vuông tại H, ta có: OB2 = OH2 + HB2 (định lí Pythagore).
Suy ra HB2 = OB2 – OH2 = R2 – OH2. (2)
Xét ∆OKD vuông tại H, ta có: OD2 = OK2 + KD2 (định lí Pythagore).
Suy ra KD2 = OD2 – OK2 = R2 – OK2. (3)
Từ (1), (2) và (3) suy ra HB2 = KD2, hay HB = KD.
Do đó 2HB = 2KD hay AB = CD.
Vậy hai dây cách đều tâm thì bằng nhau.
Lời giải bài tập Toán 9 Bài tập cuối chương 5 hay, chi tiết khác:
Bài 1 trang 124 Toán 9 Tập 1: Trong Hình 92, cho các điểm A, B, C, D, E thuộc đường tròn (O) ....
Bài 2 trang 124 Toán 9 Tập 1: a) Độ dài cung tròn có số đo 30° của đường tròn bán kính R là: ....
Bài 3 trang 124 Toán 9 Tập 1: a) Vì ABCD là hình vuông nên ta có ....
Bài 5 trang 124 Toán 9 Tập 1: Cho hai đường tròn (I; r) và (K; R) tiếp xúc ngoài với nhau tại P ....
Bài 7 trang 125 Toán 9 Tập 1: Hình 94 mô tả mảnh vải có dạng một phần tư hình vành khuyên ....
Bài 9 trang 125 Toán 9 Tập 1: Hình 96 biểu diễn vùng biển được chiếu sáng bởi một hải đăng ....
Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Toán 9 Bài 1: Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
Toán 9 Bài 4: Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Cánh diều
- Giải SBT Toán 9 Cánh diều
- Giải lớp 9 Cánh diều (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều