Giải Toán 8 trang 95 Tập 2 Kết nối tri thức
Với Giải Toán 8 trang 95 Tập 2 trong Bài 35: Định lí Pythagore và ứng dụng Toán 8 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 95.
Luyện tập 1 trang 95 Toán 8 Tập 2: Trên giấy kẻ ô vuông (cạnh ô vuông bằng 1 cm), cho các điểm A, B, C như Hình 9.35. Tính độ dài các cạnh của tam giác ABC.
Lời giải:
Từ A kẻ AM sao cho AM ⊥ MB như hình vẽ trên.
Từ C kẻ CN sao cho CN ⊥ NB như hình vẽ trên.
Từ C kẻ EC sao cho EC ⊥ EA như hình vẽ trên.
- Xét ΔAMB có AM ⊥ MB
Suy ra ΔAMB là tam giác vuông tại M.
Ta có: AB2 = AM2 + MB2 (định lí Pythagore).
Khi đó AB2 = 22 + 32 = 13. Suy ra AB = cm.
- Xét ΔBNC có CN ⊥ NB
Suy ra ΔBNC là tam giác vuông tại N.
Ta có: BC2 = NB2 + NC2 (định lí Pythagore).
Khi đó BC2 = 32 + 12 = 10. Suy ra BC = cm.
- Xét ΔAEC có EC ⊥ EA.
Suy ra ΔAEC là tam giác vuông tại E
Ta có: AC2 = AE2 + EC2 (định lí Pythagore).
Khi đó AC2 = 12 + 22 = 5. Suy ra AC = cm.
Vận dụng 1 trang 95 Toán 8 Tập 2: Em hãy giải bài toán mở đầu.
Bạn Lan vẽ một hình chữ nhật với chiều rộng và chiều dài lần lượt là 1; 3 (đơn vị đo độ dài). Sau đó Lan đặt lên trục số đoạn OM có độ dài bằng độ dài đường chéo hình chữ nhật vừa vẽ (trục số nằm ngang và M nằm bên phải gốc O). Hỏi điểm M biểu diễn số thực nào? Biết rằng đơn vị độ dài đo kích thước hình chữ nhật là như nhau.
Lời giải:
Nếu điểm M biểu diễn cho số thực x thì đoạn thẳng OM có độ dài x (đơn vị độ dài).
Đoạn thẳng OM là cạnh huyền của một tam giác vuông với hai cạnh góc vuông là hai cạnh của hình chữ nhật.Theo định lí Pythagore ta có x2 = 12 + 32 = 10. Suy ra
Vậy điểm M biểu diễn số thực .
Luyện tập 2 trang 95 Toán 8 Tập 2: Cho tam giác vuông với kích thước như Hình 9.37. Hãy tính độ dài x và cho biết những tam giác nào đồng dạng, viết đúng kí hiệu đồng dạng.
Lời giải:
Tam giác ABC vuông tại A nên theo định lí Pythagore ta có: AB2 + AC2 = BC2.
Hay x2 + 122 = 132. Suy ra x2 =132 – 122 = 25. Suy ra x = 5.
Vậy ∆ABC = ∆EDF (cạnh huyền – cạnh góc vuông).
Khi đó ∆ABC ∽ ∆EDF. (1)
Lại có .
Do đó: ∆ABC ∽ ∆MPN (c.g.c). (2)
Từ (1) và (2) suy ra ∆MPN ∽ ∆EDF.
Lời giải bài tập Toán 8 Bài 35: Định lí Pythagore và ứng dụng hay khác:
Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Kết nối tri thức
- Giải SBT Toán 8 Kết nối tri thức
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) - KNTT
- Giải sgk Toán 8 - KNTT
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT