HĐ3 trang 58 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HĐ3 trang 58 Toán 8 Tập 1: Cho hình bình hành ABCD (H.3.30).

HĐ3 trang 58 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Chứng minh ∆ABC = ∆CDA.

Từ đó suy ra AB = CD, AD = BC và ABC^=CDA^ .

b) Chứng minh ∆ABD = ∆CDB. Từ đó suy ra DAB^=BCD^ .

c) Gọi giao điểm của hai đường chéo AC, BD là O. Chứng minh ∆AOB = ∆COD. Từ đó suy ra OA = OC, OB = OD.

Lời giải:

Vì ABCD là hình bình hành nên AB // CD; AD // BC.

Suy ra BAC^=ACD^; BCA^=DAC^ (các cặp góc so le trong).

Xét ∆ABC và ∆CDA có:

BAC^=ACD^ (chứng minh trên);

Cạnh AC chung.

BCA^=DAC^ (chứng minh trên);

Do đó ∆ABC = ∆CDA (g.c.g).

Suy ra AB = CD, AD = BC (các cặp cạnh tương ứng); ABC^=CDA^ (hai góc tương ứng).

b) Xét ∆ABD và ∆CDB có:

AB = CD (chứng minh trên);

AD = BC (chứng minh trên);

Cạnh BD chung.

Do đó ∆ABD = ∆CDB (c.c.c).

Suy ra DAB^=BCD^ (hai góc tương ứng).

c) Xét ∆AOB và ∆COD có:

BAO^=DCO^ (do BAC^=CDA^);

AB = CD (chứng minh trên);

ABO^=CDO^ (do AB // CD)

Do đó ∆AOB = ∆COD (g.c.g).

Suy ra OA = OC, OB = OD (các cặp cạnh tương ứng).

Lời giải bài tập Toán 8 Bài 12: Hình bình hành hay, chi tiết khác:

Các bài học để học tốt Toán 8 Bài 12: Hình bình hành:

Xem thêm lời giải bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác