Bài 3.17 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Bài 3.17 trang 61 Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) Hai tứ giác AEFD, AECF là những hình bình hành;

b) EF = AD, AF = EC.

Lời giải:

Bài 3.17 trang 61 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.

Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = 12AB, CF = DF = 12CD

Do đó AE = BE = CF = DF.

• Xét tứ giác AEFD có:

AE // DF (vì AB // CD);

AE = DF (chứng minh trên)

Do đó tứ giác AEFD là hình bình hành.

• Xét tứ giác AECF có:

AE // CF (vì AB // CD);

AE = CF (chứng minh trên)

Do đó tứ giác AECF là hình bình hành.

Vậy hai tứ giác AEFD, AECF là những hình bình hành.

b) Vì tứ giác AEFD là hình bình hành nên EF = AD.

Vì tứ giác AECF là hình bình hành nên AF = EC.

Vậy EF = AD, AF = EC.

Lời giải bài tập Toán 8 Bài 12: Hình bình hành hay, chi tiết khác:

Các bài học để học tốt Toán 8 Bài 12: Hình bình hành:

Xem thêm lời giải bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác