Giải Toán 8 trang 94 Tập 1 Cánh diều
Với Giải Toán 8 trang 94 Tập 1 trong Bài 1: Định lí Pythagore Toán 8 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 94.
Khởi động trang 94 Toán 8 Tập 1: Quan sát Hình 1, bạn Đan khẳng định rằng: Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.
Bạn Đan đã dựa vào kiến thức nào để đưa ra khẳng định trên?
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
Bạn Đan đã dựa vào Định lí Pythagore để đưa ra khẳng định “Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại”.
Thật vậy, giả sử A, B, C là ba đỉnh của tam giác (vuông tại A) và độ dài cạnh của các hình vuông lần lượt là a, b, c (hình vẽ).
Diện tích hình vuông nhỏ màu xanh lá cây là: a2 (đơn vị diện tích).
Diện tích hình vuông nhỏ màu xanh nước biển là: b2 (đơn vị diện tích).
Diện tích hình vuông lớn màu tím là: c2 (đơn vị diện tích).
Do tam giác ABC vuông tại A nên theo định lí Pythagore ta có BC2 = AB2 + AC2
Hay c2 = a2 + b2.
Vậy diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.
Hoạt động 1 trang 94, 95 Toán 8 Tập 1: Thực hiện các hoạt động sau:
a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2).
b) Vẽ hình vuông ABCD có cạnh là b + c như Hình 3. Đặt 4 hình tam giác vuông đã cắt ở câu a lên hình vuông ABCD vừa vẽ, phần chưa bị che đi là hình vuông MNPQ với độ dài cạnh là a (Hình 4).
c) Gọi S1 là diện tích của hình vuông ABCD. Gọi S2 là tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ. So sánh S1 và S2.
d) Dựa vào kết quả ở câu c, dự đoán mối liên hệ giữa a2 và b2 + c2.
Lời giải:
a) Học sinh thực hiện theo hướng dẫn.
b) Học sinh thực hiện theo hướng dẫn.
c) Diện tích của hình vuông ABCD là: S1 = (b + c)2 (đơn vị diện tích).
Diện tích của hình vuông MNPQ là: a2 (đơn vị diện tích).
Diện tích của tam giác vuông AQM là: (đơn vị diện tích).
Tổng diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ là:
(đơn vị diện tích).
Khi đó ta có: S2 = a2 + 2bc (đơn vị diện tích).
d) Theo câu b, ta có: diện tích của hình vuông ABCD bằng tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ, hay S1 = S2
Do đó (b + c)2 = a2 + 2bc
Hay b2 + 2bc + c2 = a2 + 2bc
Suy ra b2 + c2 = a2.
Vậy a2 = b2 + c2.
Lời giải bài tập Toán 8 Bài 1: Định lí Pythagore hay khác:
Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Cánh diều
- Giải SBT Toán 8 Cánh diều
- Giải lớp 8 Cánh diều (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều