Bài 8 trang 95 Toán 8 Tập 2 Cánh diều

Bài 8 trang 95 Toán 8 Tập 2: Cho Hình 105. Chứng minh:

Bài 8 trang 95 Toán 8 Tập 2 Cánh diều | Giải Toán 8

a) ∆HAB ᔕ ∆HBC;

b) HB = HD = 6 cm.

Lời giải:

a) Xét ∆HAB và ∆HBC có:

AHB^=BHC^=90°; HAB^=HBC^  (cùng phụ với góc ABH^)

Suy ra ∆HAB ᔕ ∆HBC (g.g)

b) Do ∆HAB ᔕ ∆HBC (câu a) nên HAHB=HBHC  (tỉ số đồng dạng)

Suy ra HB2 = HA.HC = 4 . 9 = 36

Do đó HB = 6 cm.

Xét ∆HAD và ∆HDC có

AHD^=DHC^=90°; HAD^=HDC^  (cùng phụ với góc ADH^)

Do đó ∆HAD ᔕ ∆HDC (g.g)

Suy ra HAHD=HDHC  (tỉ số đồng dạng)

Nên HD2 = HA.HC = 4 . 9 = 36

Do đó HD = 6 (cm).

Vậy HB = HD = 6 cm.

Lời giải bài tập Toán 8 Bài tập cuối chương 8 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Cánh diều khác