Bài 3 trang 85 Toán 8 Tập 2 Cánh diều

Bài 3 trang 85 Toán 8 Tập 2: Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh:

a) ∆ACD ᔕ ∆BCE và CA.CE = CB.CD.

b) ∆ACD ᔕ ∆AHE và AC.AE = AD.AH.

Lời giải:

Bài 3 trang 85 Toán 8 Tập 2 Cánh diều | Giải Toán 8

a) Do tam giác ABC có hai đường cao AD và BE nên AD ⊥ BC, BE ⊥ AC.

Suy ra ADC^=BCE^=90°; ADC^=AEH^=90°

Xét ∆ACD và ∆BCE có:

ADC^=BCE^=90°; C^ là góc chung

Suy ra ∆ACD ᔕ ∆BCE (g.g).

Do đó ACBC=CDCE (tỉ số đồng dạng)

 Vì vậy, CA.CE = CB.CD.

b) Xét ∆ACD và ∆AHE có:

DAC^ là góc chung; ADC^=AEH^=90°

Suy ra∆ACD ᔕ ∆AHE (g.g).

Do đó ACAH=ADAE (tỉ số đồng dạng)

Vì vậy, AC.AE = AH.AD.

Lời giải bài tập Toán 8 Bài 8: Trường hợp đồng dạng thứ ba của tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Cánh diều khác